БИОЛОГИЯ МОРЯ

Вып. 26

ЭКОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ ДОНЫХ ОРГАНИЗМОВ

РЕСПУБЛИКАНСКИЙ МЕЖВЕДЕОМСТВЕННЫЙ СБОРНИК

ИЗДАТЕЛЬСТВО «НАУКОВА ДУМКА»
КИЕВ — 1972
ВОПРОСЫ ЭКОЛОГИИ АЗОВО-ЧЕРНОМОРСКИХ ОСТРАКОД

Е.И. Щорников

остракод Азовского, Черного, Каспийского и Средиземного морей мы накопили материалы, позволяющие значительно дополнить и уточнить эти сведения.

Азовское и Черное моря представляют собой моря аномального характера, и экологические условия, сложившиеся в них, во многом отличаются от тех, которые наблюдаются в типично морских водоемах. Фауна этих морей представлена эврибионтными видами, и даже наиболее стеннобионтные из них в большей или меньшей степени эврибионтны в отношении видов, обитающих в типично морских водоемах.

Отношение остракод к солености воды.

Для многих средиземноморских иммигрантов возможность указать верхнюю границу солености весьма ограничена. Кроме пониженной солености, воды Черного и Азовского морей отличаются от обычной морской воды несколько другим соотношением концентраций отдельных ионов (по "рациональному" фактору) за счет присоединения ионов калия, кальция и магния. Соленость, близкая к морской и даже значительно превышающая ее, встречается в пределах Азово-Черноморского бассейна только в лиманах, но эти водоемы характеризуются не столько высокой соленостью воды, сколько сильно изменениями ее этого фактора, и в них выживают только наиболее эврибионтные виды. Принимать же за границы галопатии азово-черноморских видов данные, полученные на основании изучения этих же видов в других бассейнах, весьма рискованно. Известны многочисленные примеры в отношении организмов из различных групп животных, когда в силу причин исторического и экологического характера одни и те же виды в различных бассейнах по-разному относятся к солености; во многом это справедливо и для остракод.

В таблице указанна соленость, при которой виды были найдены в Азово-Черноморском бассейне и в других районах (по данным Эллоувена (Elofsson, 1941) Хартмана (Hartmann, 1957) и других авторов, а также на основании собственных наблюдений). В отношении многих видов границы их галопатии должны быть уточнены на основании полевых наблюдений и экспериментов; особенно это касается черноморских видов, которые, несомненно, могут переносить соленость выше черноморской, и видов каспийского происхождения, многие из которых в Азово-Черноморском бассейне были обнаружены только в пресных водах.

Предложенная Ремане (Remane, 1958) группировка организмов по отношению их к солености воды, основанная на двух, как правило, взаимосвязанных признаках — происхождение организмов и степень их
эвригаланиности — нам кажется наиболее удачной из множества группировок, предложенных различными авторами. Она не является универсальной. Да и вряд ли следует стремиться к созданию такой универсальной группировки, которая, не подвергаясь модификациям, была бы с одинаковым успехом применима во всех случаях, которые могут быть встречены в природе. Такая группировка была бы настолько громоздкой, что оказалась бы мало применима на практике. Однако разработка наиболее рациональных общих принципов деления организмов на группы по отношению их к солености необходима, и в этом направлении гидробиологам еще предстоит проделать большую работу. Что же касается широко распространенного принципа группировки, основанного на том представлении, что для видов должны существовать какие-то определенные оптимальные границы солености, в пределах которых вид встречается в наиболее массовом количестве, то он мало приемлем для сколько-нибудь эвригаланиных видов, когда их количество зависит не столько от солености воды, сколько от других факторов. Если следовать этому принципу, то мы вынуждены были бы чуть ли не всех средиземноморских иммигрантов отнести к мезогаланиным видам (на том основании, что в Черном море при солености 17–18%. они встречаются в гораздо больших количествах, чем в Средиземном море), а не считать их эвригаланиными морскими видами, тогда как большая численность этих видов в Черном море скорее объясняется не тем, что средиземноморская соленость для них благоприятна, а тем, что в Черном море они находят более благоприятные условия в отношении пищи и других факторов.

При разграничении азово-черноморских остракод на группы в зависимости от отношения их к солености воды мы не избежали тех трудностей, о которых говорит Ремане (1958), как в отношении наиболее рациональной группировки, так и в отношении правильного их наименования. В основном мы придерживались принципов, выдвинутых Ремане, но далеко не во всех случаях нам удалось выделить группы, разнозначные тем, которые были им выделены (см. таблицу).

Галобии — морские виды

1. Наиболее эвригаланитными из черноморских видов, обитающие только в районе Прибрежья. В этом районе соленые воды, проникающие из Мраморного моря, распространяются узкой полосой в виде тонкого придонного слоя толщиной в 3–6 м и обеспечивают жизнь наиболее эвригаланиными средиземноморских иммигрантов, обитающим здесь при солености 25–33%. (Якубова, 1948; Богданова, 1960). Учитывая, что распространение этого придонного течения значительно меняется в
<table>
<thead>
<tr>
<th>Вид</th>
<th>Отношение к температуре</th>
<th>Отношение к глубинам</th>
<th>Пределы солености, при которых обитают в Азово-Черноморском бассейне</th>
<th>Пределы солености, при которых обитают в Других районах</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euphilomedes interpuncta (Baird, 1850)</td>
<td>+</td>
<td>25-33</td>
<td>36-39</td>
<td></td>
</tr>
<tr>
<td>Polycopre frequens G.W. Müller, 1894</td>
<td>+</td>
<td>I8-22</td>
<td>37-39</td>
<td></td>
</tr>
<tr>
<td>Bairdia rariplila G.W. Müller, 1894</td>
<td>+</td>
<td>I8-22</td>
<td>37-39</td>
<td></td>
</tr>
<tr>
<td>Bairdia sp.</td>
<td>?</td>
<td>25-33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paracypris polita G. O. Sars, 1866</td>
<td>+</td>
<td>25-33</td>
<td>20-39</td>
<td></td>
</tr>
<tr>
<td>Aglaiocypriis complanata (Brady & Robertsson, 1869)</td>
<td>+</td>
<td>17-22</td>
<td>36-39</td>
<td></td>
</tr>
<tr>
<td>Propontocypris intermedia (Brady, 1868)</td>
<td>+</td>
<td>25-33</td>
<td>37-39</td>
<td></td>
</tr>
<tr>
<td>Gandonia schweyeri Schornikov, 1964</td>
<td>+</td>
<td></td>
<td>Пречн.-?</td>
<td>I2,5</td>
</tr>
<tr>
<td>Cyprinothus salina (Brady, 1868)</td>
<td>+</td>
<td>n -10</td>
<td>Пречн.</td>
<td>-10</td>
</tr>
<tr>
<td>Eucypris inflata (G. O. Sars, 1903)</td>
<td>+</td>
<td>2, 8-106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cypridopsis aculeata (Costa, 1847)</td>
<td>+</td>
<td></td>
<td>Пречн.</td>
<td>-7</td>
</tr>
<tr>
<td>Potamocypris steueri Klie, 1935</td>
<td>+</td>
<td>n -26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pontocythere tchernjewskii Dubowski, 1939</td>
<td>+</td>
<td>19-22</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>P. bacescoi (Caraion, 1960)</td>
<td>+</td>
<td>II-33</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Cyprideis torda var. torda (Jones, 1850)</td>
<td>+</td>
<td></td>
<td>Пречн.-70</td>
<td>Пречн.</td>
</tr>
<tr>
<td>C. torda var. littoralis (Brady, 1868)</td>
<td>+</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytheridea acuminata (Bosquet, 1852)</td>
<td>+</td>
<td>18-33</td>
<td>37-39</td>
<td></td>
</tr>
<tr>
<td>Eucythere declivis var. parva Brady & Rob., 1869</td>
<td>+</td>
<td>25-33</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Cytheromorpha fusca (Brady, 1869)</td>
<td>+</td>
<td>I,5-10</td>
<td>I,5-30</td>
<td></td>
</tr>
<tr>
<td>Microcytherura nigroccens G.W. Müller, 1894</td>
<td>+</td>
<td>II-33</td>
<td>37-38</td>
<td></td>
</tr>
<tr>
<td>M. fulvoides Dubowsky, 1939</td>
<td>?</td>
<td>14-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Солености</td>
<td>Галобии</td>
<td>Гифаль-мировия</td>
<td>Лимно-бии</td>
<td>Распределение по биотопам</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
<td>--------</td>
<td>------------------------</td>
</tr>
<tr>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
</tr>
</tbody>
</table>

Обратите внимание: таблица содержит информацию о солености в галобии, гифаль-мировии и лимно-бии, а также распределение по биотопам. Точность интерпретации данных зависит от контекста и знаний в области гидробиологии.
<table>
<thead>
<tr>
<th>Вид</th>
<th>Лиманы</th>
<th>Эскуарди</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

- Euphilomedes interpuncta (Baird, 1850)
- Polycope frequens G. W. Müller, 1894
- Bairdia raripila G. W. Müller, 1894
- Bairdia sp.
- Paracypris polita G. O. Sars, 1866
- Aglaiocypris complanata (Brady & Robertson, 1869)
- Propontocypris intermedia (Brady, 1868)
- Candona schweferi Schornikov, 1964
- Cyprinitus salina (Brady, 1868)
- Eucypris inflata (G. O. Sars, 1903)
- Cypridopsis aculeata (Costa, 1847)
- Pontoecypris steueri Klies, 1935
- Pontocythere tchernjawskii Dubowsky, 1939
- P. baecoci (O'aragon, 1960)
- Cypridis torosa var. torosa (Jones, 1850)
- C. torosa var. littoralis (Brady, 1868)
- Cytheridea acuminata (Bosquet, 1852)
- Eucythere declivis var. parva Brady & Rob., 1869
- Cytheromorpha fuscata (Brady, 1869)
- Microcytherura nigrescens G. W. Müller, 1894
- M. fulvoides Dubowsky, 1939
<table>
<thead>
<tr>
<th>Глубина, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 20 30 40 60 80 100</td>
</tr>
<tr>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Вид</th>
<th>Отношение к (t_0)</th>
<th>Отношение к пределам солевости, при которых обитают в азово-черноморском бассейне</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptocythere fabeiformis G. W. Müller, 1894</td>
<td>+</td>
<td>I7-22</td>
</tr>
<tr>
<td>L. ramosa (R o m e, 1942)</td>
<td>+</td>
<td>I8-33</td>
</tr>
<tr>
<td>L. macallena (B r â d y & R o b e r t s o n, 1869)</td>
<td>+</td>
<td>I8-33</td>
</tr>
<tr>
<td>L. multipunctata (S e g u e n z a, 1884)</td>
<td>+</td>
<td>II-33</td>
</tr>
<tr>
<td>L. devesa S c h o r n i k o v, 1966</td>
<td>+</td>
<td>II-33</td>
</tr>
<tr>
<td>L. nitida S c h o r n i k o v, 1966</td>
<td>?</td>
<td>I8-22</td>
</tr>
<tr>
<td>L. histriana C a r a i o n, 1964</td>
<td>+</td>
<td>I, 7-59, 26</td>
</tr>
<tr>
<td>L. rara (G. W. Müller, 1894)</td>
<td>+</td>
<td>II-22</td>
</tr>
<tr>
<td>L. longa (N e g a d a e v, 1955)</td>
<td>+</td>
<td>Пресн. - ?</td>
</tr>
<tr>
<td>L. cymbula (L i v e n t a l, 1929)</td>
<td>+</td>
<td>" - ?</td>
</tr>
<tr>
<td>L. reticulata S c h o r n i k o v, 1966</td>
<td>+</td>
<td>Пресн. - 3, 5</td>
</tr>
<tr>
<td>L. pediformis S c h o r n i k o v, 1966</td>
<td>+</td>
<td>" - ?</td>
</tr>
<tr>
<td>Loxcauda müllerii S c h o r n i k o v, 1969 ?</td>
<td>I8-33</td>
<td></td>
</tr>
<tr>
<td>Microloxoceoura marinovi S c h o r n i k o v, 1969</td>
<td>I8-22</td>
<td></td>
</tr>
<tr>
<td>Paracytheridea paulii D u b o w s k y, 1939 ?</td>
<td>I8-33</td>
<td></td>
</tr>
<tr>
<td>Levocytherura pontica (M a r i n o v, 1962) ?</td>
<td>II-22</td>
<td></td>
</tr>
<tr>
<td>L. remanei (M a r i n o v, 1962)</td>
<td>?</td>
<td>I8-22</td>
</tr>
<tr>
<td>Semicytherura acuticostata (G. O. S a r s, 1866)</td>
<td>+</td>
<td>25-33</td>
</tr>
<tr>
<td>S. alifera alifera R u g g i e r i, 1959 +</td>
<td>25-33</td>
<td></td>
</tr>
<tr>
<td>S. virgata S c h o r n i k o v, 1970</td>
<td>+</td>
<td>II-33</td>
</tr>
<tr>
<td>S. euxinica (C a r a i o n, 1967)</td>
<td>+</td>
<td>II-33</td>
</tr>
<tr>
<td>S. calamitica S c h o r n i k o v, 1969 ?</td>
<td>?</td>
<td>I7-33</td>
</tr>
<tr>
<td>H. videns (G. W. Müller, 1894)</td>
<td>+</td>
<td>I8-33</td>
</tr>
<tr>
<td>Pseudocytherura pontica (D u b o w s k y, 1939)</td>
<td>?</td>
<td>I8-33</td>
</tr>
</tbody>
</table>

60
<table>
<thead>
<tr>
<th>Сосудистый тип</th>
<th>Расселение по гиотопам</th>
</tr>
</thead>
<tbody>
<tr>
<td>Другие районы</td>
<td>Галобий</td>
</tr>
<tr>
<td>36-39</td>
<td>+</td>
</tr>
<tr>
<td>37-39</td>
<td>+</td>
</tr>
<tr>
<td>10-39</td>
<td>+</td>
</tr>
<tr>
<td>37-39</td>
<td>+</td>
</tr>
</tbody>
</table>

61
<table>
<thead>
<tr>
<th>Вид</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptocythere fabaeformis G.W. Müller, 1894</td>
</tr>
<tr>
<td>L. ramosa (Rome, 1942)</td>
</tr>
<tr>
<td>L. macallena (Brady & Robertson, 1869)</td>
</tr>
<tr>
<td>L. multipunctata (Seguenza, 1884)</td>
</tr>
<tr>
<td>L. devexa Schornikov, 1966</td>
</tr>
<tr>
<td>L. nitida Schornikov, 1966</td>
</tr>
<tr>
<td>L. histriana Carai on, 1964</td>
</tr>
<tr>
<td>L. rara (G.W. Müller, 1894)</td>
</tr>
<tr>
<td>L. longa (Negadov, 1955)</td>
</tr>
<tr>
<td>L. cymbula (Livent al, 1929)</td>
</tr>
<tr>
<td>L. reticulata Schornikov, 1966</td>
</tr>
<tr>
<td>L. pediformis Schornikov, 1966</td>
</tr>
<tr>
<td>Loxocauda mulleri Schornikov, 1969</td>
</tr>
<tr>
<td>Microloxoconcha marinovi Schornikov, 1969</td>
</tr>
<tr>
<td>Paracytheridea pauli Dubowsky, 1939</td>
</tr>
<tr>
<td>Levocytherura pontica (Marinov, 1962)</td>
</tr>
<tr>
<td>L. remanei (Marinov, 1962)</td>
</tr>
<tr>
<td>Semicytherura acuticostata (G.O. Sars, 1866)</td>
</tr>
<tr>
<td>S. alifera alifera Ruggieri, 1959</td>
</tr>
<tr>
<td>S. virgata Schornikov, 1970</td>
</tr>
<tr>
<td>S. euxinica (Carai on, 1967)</td>
</tr>
<tr>
<td>S. calamitica Schornikov, 1969</td>
</tr>
<tr>
<td>Hemicytherura bulgarica (Klie, 1937)</td>
</tr>
<tr>
<td>H. videns (G.W. Muller, 1894)</td>
</tr>
<tr>
<td>Fauxocytherura pontica (Dubowsky, 1939)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Деканы</th>
<th>Индекс</th>
<th>0</th>
<th>5</th>
</tr>
</thead>
</table>

:26:27:
<table>
<thead>
<tr>
<th>Глубина, м</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вид</td>
<td>Отношение к</td>
<td>Отношение к</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cytheropteron rotundatum G. W. Müller, 1894</td>
<td>+</td>
<td>25-33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xestoleberis aurantia (Baird, 1839)</td>
<td>+</td>
<td>I, 7-59,26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X.acutipenis Carayon, 1963</td>
<td>?</td>
<td>I4-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X.cornelii Carayon, 1963</td>
<td>?</td>
<td>II-33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X.decipiens G. W. Müller, 1894</td>
<td>+</td>
<td>II-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcythere varnensis Marinov, 1962</td>
<td>?</td>
<td>Пресн.-?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. longiantennata Marinov, 1962</td>
<td>?</td>
<td>I-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parvocythere hartmanni Marinov, 1962</td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bythocythere turgida G. O. Sars, 1866</td>
<td>+</td>
<td>I8-33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scolochilus gewesülleri Dubowsky, 1939</td>
<td>+</td>
<td>II-33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. dubowskyi Marinov, 1962</td>
<td>?</td>
<td>I8-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytherois cepa Klie, 1937</td>
<td>+</td>
<td>I, 7-59,26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.valcanovi Klie, 1937</td>
<td>?</td>
<td>II-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. niger Schornikov, 1965</td>
<td>?</td>
<td>I4-33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. pontica Marinov, 1966</td>
<td>?</td>
<td>I8-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. planus Schornikov, 1969</td>
<td>?</td>
<td>I8-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. pseudovitrea Dubowsky, 1939</td>
<td>?</td>
<td>I8-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. pseudovitrea messambriensis Marinov, 1964</td>
<td>?</td>
<td>I8-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. carcinitica Marinov, 1964</td>
<td>?</td>
<td>I8-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. succinoides Dubowsky, 1939</td>
<td>?</td>
<td>I8-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paracythereis agigensis Carayon, 1963</td>
<td>?</td>
<td>I7-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paradoxostoma intermedium C.W. Müller, 1894</td>
<td>+</td>
<td>II-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

64
<table>
<thead>
<tr>
<th>Солености</th>
<th>Галобион</th>
<th>Тифаль-широ-бион</th>
<th>Лимно-бион</th>
<th>Распределение по биотопам</th>
</tr>
</thead>
<tbody>
<tr>
<td>Свободных</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>В других районах</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>37-39</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3-36</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>37-39</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>30-39</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>37-39</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

65
<table>
<thead>
<tr>
<th>Вид</th>
<th>Линия</th>
<th>Строчк</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cythereopteron rotundatum G. W. Müller, 1894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kestoleberis aurantia (Baird, 1839) +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X. acutipenis Carcion, 1963</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X. cornelii Carcion, 1963</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X. decipiens G. W. Müller, 1894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcythere varnensis Marinov, 1962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. longiantennata Marinov, 1962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parvocythere hartmanni Marinov, 1962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bythocythere turgida G. O. Sars, 1866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sclerochilus gewemuelleri Dubowsky, 1939</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. dubowskyi Marinov, 1962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cythereis cepa Klie, 1937</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. vulcanovi Klie, 1937</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. niger Schornikov, 1965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. pontica Marinov, 1966</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. planus Schornikov, 1969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. pseudovitrea Dubowsky, 1939</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. pseudovitrea messambriensis Marinov, 1964</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. carcinita Marinov, 1964</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. succincides Dubowsky, 1939</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paracythereis asigensis Carcion, 1963</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paradoxostoma intermedium G. W. Müller, 1894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Глубина, м</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

67
<table>
<thead>
<tr>
<th>Вид</th>
<th>Отношение к</th>
<th>Отношение</th>
<th>Пределы солености, при которых обитает</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. naviculum Schornikov, 1965</td>
<td>?</td>
<td>II-20</td>
<td>в Азово-Черноморском бассейне</td>
</tr>
<tr>
<td>P. mediterraneum G. W. Müller, 1894</td>
<td>+</td>
<td>25-33</td>
<td></td>
</tr>
<tr>
<td>P. similis G. W. Müller, 1894</td>
<td>+</td>
<td>I8-33</td>
<td></td>
</tr>
<tr>
<td>P. convexum Schornikov, 1965</td>
<td>+</td>
<td>II-20</td>
<td></td>
</tr>
<tr>
<td>P. guttatum Schornikov, 1965</td>
<td>?</td>
<td>I7-22</td>
<td></td>
</tr>
<tr>
<td>L. relicta Schornikov, 1964</td>
<td>+</td>
<td>Пресн.-?</td>
<td></td>
</tr>
<tr>
<td>L. gracilloides Schornikov, 1964</td>
<td>+</td>
<td>"=0,25</td>
<td></td>
</tr>
<tr>
<td>L. striatocostata (Schweyer, 1949)</td>
<td>+</td>
<td>"=?</td>
<td></td>
</tr>
<tr>
<td>L. quinquetuberculata (Schweyer, 1949)</td>
<td>+</td>
<td>"=5</td>
<td></td>
</tr>
<tr>
<td>L. bacuana (L. ventral, 1938)</td>
<td>+</td>
<td>"=?</td>
<td></td>
</tr>
<tr>
<td>L. lopatici Schornikov, 1964</td>
<td>+</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Callistocythere ajecta Schornikov, 1966</td>
<td>?</td>
<td>I8-33</td>
<td></td>
</tr>
<tr>
<td>C. crispata (Brady, 1868)</td>
<td>+</td>
<td>I8-33</td>
<td></td>
</tr>
<tr>
<td>G. flavidofusca (Ruggieri, 1950)</td>
<td>+</td>
<td>I8-33</td>
<td></td>
</tr>
<tr>
<td>G. diffusa (G. W. Müller, 1894)</td>
<td>+</td>
<td>I8-33</td>
<td></td>
</tr>
<tr>
<td>G. mediterranea (G. W. Müller, 1894)</td>
<td>+</td>
<td>I4-22</td>
<td></td>
</tr>
<tr>
<td>Buntonia subulata rectangularis</td>
<td>+</td>
<td>25-33</td>
<td></td>
</tr>
<tr>
<td>Ruggieri, 1954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carinocythereis carinata (Roemer, 1838)</td>
<td>+</td>
<td>I8-33</td>
<td></td>
</tr>
<tr>
<td>C. rubra (G. W. Müller, 1894)</td>
<td>+</td>
<td>I4-33</td>
<td></td>
</tr>
<tr>
<td>Pterigocythereis jonesii (Baird, 1850)</td>
<td>+</td>
<td>25-33</td>
<td></td>
</tr>
<tr>
<td>Costa edwardsii runcinata (Baird, 1850)</td>
<td>+</td>
<td>25-33</td>
<td></td>
</tr>
<tr>
<td>Aurila convexa (Baird, 1850)</td>
<td>+</td>
<td>25-33</td>
<td></td>
</tr>
<tr>
<td>A. dubowskyi Schornikov, 1969</td>
<td>?</td>
<td>I8-33</td>
<td></td>
</tr>
<tr>
<td>Heterocythereis roticulata Schornikov, 1969</td>
<td>?</td>
<td>I8-?</td>
<td></td>
</tr>
<tr>
<td>в других районах</td>
<td>Галобии</td>
<td>Гифальмирии</td>
<td>Лимно-биом</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>U</td>
<td>YI</td>
</tr>
<tr>
<td></td>
<td>WX</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-39</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-39</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-39</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-39</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-39</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-39</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-39</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-39</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-39</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Из до глубины 50 м

| 69 |

69
<table>
<thead>
<tr>
<th>Вид</th>
<th>Лимены</th>
<th>Эстуарии</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. naviculum Schornikov, 1965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. mediterraneum G.W. Müller, 1894</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>P. simile G.W. Müller, 1894</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>P. convexum Schornikov, 1965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. guttatum Schornikov, 1965</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>L. relictas Schornikov, 1964</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. gracilloides Schornikov, 1964</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>L. striatocostata (Schweyer, 1949)</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>L. quinquetuberculata (Schweyer, 1949)</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>L. bacuana (Liventai, 1938)</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>L. lopatici Schornikov, 1964</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Callistocythere abjecta Schornikov, 1965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. crassata (Brady, 1868)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. flavidofusca (Ruggieri, 1950)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>C. diffusa (G.W. Müller, 1894)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>C. mediterranea(G. W. Müller, 1894)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buntonia subulata rectangularis Ruggieri, 1954</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Carinocythereis carinata (Roemer, 1836)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>C. rubra (G.W. Müller, 1894)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Pterygocythereis Jonesii (Baird, 1850)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costa edwardiana runcinata (Baird, 1850)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Aurila convexa (Baird, 1850)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. dubowskyi Schornikov, 1969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterocythereis reticulata Schornikov, 1969</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Глубина, м

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th>Вид</th>
<th>Отношение к</th>
<th>Отношение к</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Теплолюбивое</td>
<td>Холодолюбивое</td>
</tr>
<tr>
<td></td>
<td>Заброинованное</td>
<td>Обнажение</td>
</tr>
<tr>
<td></td>
<td>Пресноводные</td>
<td>Морские</td>
</tr>
<tr>
<td>Tyrrhenocythere amnicola (G. O. Sars, 1867)</td>
<td>+</td>
<td>И.8-33</td>
</tr>
<tr>
<td>Urocythereis margaritifera (G. W. Müller, 1894)</td>
<td>+</td>
<td>И.8-33</td>
</tr>
<tr>
<td>Cytthera variabilis G. W. Müller, 1894</td>
<td>+</td>
<td>И.8-22</td>
</tr>
<tr>
<td>C. Karadaginis Dubowsky, 1939</td>
<td>+</td>
<td>И.8-22</td>
</tr>
<tr>
<td>C. Marinovi Schornikov, 1969</td>
<td>?</td>
<td>И.8-22</td>
</tr>
<tr>
<td>Pontocytherea arenaria Martini, 1963</td>
<td>?</td>
<td>И.8-22</td>
</tr>
<tr>
<td>Loxoconcha rhomboidea (Fischer, 1855) var. "macra"</td>
<td>?</td>
<td>И.8-33</td>
</tr>
<tr>
<td>L. rhomboidea var. "micra"</td>
<td>+</td>
<td>II-22</td>
</tr>
<tr>
<td>L. granulata G. O. Sars, 1866</td>
<td>+</td>
<td>И.8-33</td>
</tr>
<tr>
<td>L. pontica Klie, 1937</td>
<td>+</td>
<td>II-22</td>
</tr>
<tr>
<td>L. elliptica (Brady, 1868)</td>
<td>+</td>
<td>I, 7-59,26</td>
</tr>
<tr>
<td>L. globosa Schornikov, 1965</td>
<td>?</td>
<td>И.8-22</td>
</tr>
<tr>
<td>L. pennata Schornikov, 1965</td>
<td>?</td>
<td>И.8-33</td>
</tr>
<tr>
<td>L. aestuarri Marinov, 1963</td>
<td>+</td>
<td>I, 7-59,26</td>
</tr>
<tr>
<td>L. lepida Stepnaitys, 1962</td>
<td>+</td>
<td>Пресн. -?</td>
</tr>
<tr>
<td>L. immodulata Stepnaitys, 1962</td>
<td>+</td>
<td>" -?</td>
</tr>
<tr>
<td>L. nana Marinov, 1962</td>
<td>+</td>
<td>6-18</td>
</tr>
<tr>
<td>L. bulgarica Oraion, 1960</td>
<td>+</td>
<td>II-18</td>
</tr>
<tr>
<td>Paradoxostoma tauricum Schornikov, 1965</td>
<td>?</td>
<td>II-22</td>
</tr>
<tr>
<td>P. variabile (Baird, 1835)</td>
<td>+</td>
<td>И.8-22</td>
</tr>
<tr>
<td>P. ponticum Klie, 1942</td>
<td>+</td>
<td>18-22</td>
</tr>
<tr>
<td>Ommocycytheara semipunctata (Brady, 1857)</td>
<td>+</td>
<td>25-33</td>
</tr>
</tbody>
</table>

72
<table>
<thead>
<tr>
<th>Содености</th>
<th>Галобии</th>
<th>Жирафо-</th>
<th>Лишното-</th>
<th>Распределение по биото-</th>
<th>Метки</th>
</tr>
</thead>
<tbody>
<tr>
<td>в других</td>
<td></td>
<td>миробии</td>
<td>нобии</td>
<td>пам</td>
<td></td>
</tr>
<tr>
<td>районах</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
</tr>
<tr>
<td>5-13,59</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-39</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-39</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-39</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-39</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-39</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-36</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-39</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Тырреноцифер амникила (G.O. Sars, 1887)
Уролюцефа магаритифера (G.W. Müller, 1894)
Ситерома вариабилис G.W. Müller, 1894
C. karadaginis Dubowsky, 1939
C. marinoi Schornikov, 1969
Пентомуцефа arranaria Marinov, 1963
Loxococcha rhomboidea (Fischer, 1855) var. "macro"
L. rhomboidea var. "micra"
L. granulata G. O. Sars, 1866
L. pontica Kle, 1937
L. elliptica (Brady, 1868)
L. globosa Schornikov, 1965
L. pennata Schornikov, 1965
L. aestuaria Marinov, 1963
L. lepida Stepainaitys, 1962
L. immundulata Stepainaitys, 1962
L. nana Marinov, 1962
L. bulgarica Caraison, 1960
Paradoxostoma tauricum Schornikov, 1965
P. variabile (Baird, 1835)
P. ponticum Kle, 1942
Гусецуцефа semipunctata (Brady, 1867)

Условные обозначения: (+) - массовые (характерные) формы;
встречены живые; (-----) - встречены створки; (........) - предполагае-
Глубина, м

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

(x) - обычные формы; (-) - редкие (некарактерные) формы; (——-) - особое распространение. Пресн. - пресноводный.
зависимости от времени года, можно предположить, что прибосфорские виды могут переносить опреснение и ниже 25%. Однако вряд ли они способны жить в условиях такого опреснения в течение длительного времени, так как встречаются на очень ограниченном участке, совпадающем с распространением мраморноморских соленых вод. К этой группе мы относим 14 видов, II из которых были обнаружены только в виде отводка. Створки Parascyphia polita встречены также у берегов Болгарии в Небосаарском заливе; видимо, этот вид может жить при солености ниже 25%, но по каким-то причинам не расселился по всей акватории Черного моря (Маринов, 1965).

П. Относительно стеногалинны виды, распространеные только в открытой части моря, при солености не ниже 17%. К этой группе можно отнести 35 форм. Разумеется, что даже наиболее стеногалинный черноморские виды, которые мы относим к этим двум группам, по сравнению с настоящими стеногалинными морскими видами обладают значительно большей ареалом. Виды, аналогичным образом реагирующие на соленость, Ремане относит к группе "эвригалинных галобиев I", способных жить при солености от нормальной морской до 15-18%.

II. Виды, обычно живущие в открытой части Черного моря и по- лузамкнутых черноморских бухтах, но в северной части Керченского пролива не обитают. Это морские виды, способные жить при опреснении до 14%. Возможно, что к этой группе принадлежат некоторые виды, относящиеся к группе II, которые заходят в более или менее открытые черноморские бухты, но не найденные пока при солености ниже 17%. К этой группе относятся 15 видов.

IV. Виды, живущие в открытой части Черного моря, черноморских бухтах и в северной части Керченского пролива. Это эвригалинные морские виды, переносящие опреснение до 11%. К этой группе следует отнести 20 видов, 10 из них, являясь реликтами калафитского времени, живут в Утлянском лимане, где соленость также не превышает 11% (Шорников, 1967). Виды, относящиеся к III и IV группам, по своей эвригалинности соответствуют выделенной Ремане группе "эвригалинных галобиев II", способны жить при солености от нормальной морской до 8%.

У. Широко эвригалинные виды морского происхождения, способные жить при солености от 1, 7% до 60%. К этой группе относится небольшое количество видов, распространенние которых почти не зависит от солености воды. Один из них, Loxoconcha elliptica, Ремане относит к специфическим солоноватоводным видам—гипофилия. Однако, как показали наши исследования, его распространенние ни
в коей мере не ограничивается солоноватоводным спектром. Интересно, что в пределах Азово-Черноморского бассейна эти виды заселяют "незаполненные экологические ниши". С одной стороны, это мейомезогалинныя воды, где основная масса средиземноморских видов не способна жить из-за недостаточной солености, а каспийские и пресноводные виды — из-за слишком высокой. В этой экологической нише они встречаются в очень больших количествах и могут быть приняты за специфические мейомезогалинные виды. С другой стороны, это воды с соленостью более высокой, вплоть до 60%, а может быть, и выше, но сильно меняющейся в зависимости от притока пресных вод и испарения. Большинство морских видов не способно переносить такие резкие колебания солености, и здесь также создается экологическая ниша, где широко эвригаллинные виды образуют скопления не меньше, чем в мейомезогалинных условиях. Эти виды способны жить в условиях черноморской солености, и тем не менее поверхности не встречаются. Такая особенность в их распространении зависит, видимо, от того, что, приобретая эвригаллиность, они оказались в очень выгодных условиях при заселении вод, сильно отличающихся от морских, и в результате в значительной степени утратили конкурентоспособность. В водоемах, где более или менее полно представлена морская фауна, они не выдерживают конкуренции с ее сторону и оказываются вытесненными в неблагоприятные для большинства морских видов, но вполне благоприятные для широко эвригаллиниых видов, условия.

К этой группе, вероятно, следует отнести и виды, живущие в интерстициали. Соленость интерстициальных вод весьма колеблется как в сторону опреснения за счет притока грунтовых вод, так и осолонения в зависимости от солености прилежащих к ним водоемов. Азово-Черноморские интерстициальные воды остракод могут переносить сильное, иногда почти полное опреснение (Маринов, 1964 в), что же касается их способности переносить соленость выше черноморской (17—18%), то об этом пока ничего не известно.

Аналогичная группа видов не была выделена Реманом. Эти виды, с одной стороны, близки к выделенной им группе олигогалинных геобиев, способных жить в условиях от нормальных морских до олигогалинных; с другой стороны, близки к группе голевригаллиных видов.

I. Голевригаллиные виды. Виды, распространение которых не зависит от солености воды, так как они способны жить в водах с очень высокой соленостью, нормальной морской и в условиях полного опреснения. К этой группе можно отнести только один вид Cypriidea
torosa, но по своей биологии он не совсем соответствует характеру ристике, данной Раману для голавригалиных видов. Он способен жить при солености до 60% (на это указывает и Раману) и выше.

В морских водоемах ведет себя подобно широко звритагалиным видам, отнесенным нами к \(Y \) группе, и встречается совместно с ними. В пресных водах он обитает в низовых рек, крупных озерах, и вряд ли способен жить в совершенно атагалиных водоемах.

Гибель миров - специфические солоноватоводные виды

УП. Мезогалинные виды, живущие в мезогалинных условиях и не переносящие полного опреснения. К этой группе можно отнести только один вид Cytharomorpha fusca.

УШ. Виды каспийского происхождения в Азово-Черноморском бассейне обитают в олигогалинных условиях и в пресных водах. Зачастую трудно решить, считать ли изучаемый вид олигогалинным или пресноводным. В случае, когда численность вида имеет максимум в олигогалинной зоне, но убывает по направлению к реке, может оказаться, что это происходит не вследствие уменьшения солености, а в силу специфических свойств пресных водоемов. Подавляющее большинство каспийских видов встречено только в пресных водах, где они достигают большой численности. В условиях некоторого осолонения в эстуарной системе Дона встречены только 4 вида, как олигогалиний виды здесь только Leptocytthera quinquetuberculata; остальные виды встречаются в значительном количестве как в пресных водах, так и в условиях осолонения. В эстуариях Кубани L. quinquetuberculata отмечен в сильно опресненных лиманах Курчанском и Большом Ахтанизовском. В бассейне реки Дона L. quinquetuberculata и L. sylvestra встречены в массовых количествах в пресных озерах Ялпуг и Кугурлу.

У азово-черноморских острокон каспийского происхождения в отношении к солености наблюдаются те же закономерности, что и у других каспийских видов (Мордухай-Болтовской, 1960). Те же виды в бассейне Азовского моря оказываются более галофильными, чем в водоемах северо-западного побережья Черного моря. Виды каспийского происхождения, будучи в Азово-Черноморском бассейне олигогалинными или пресноводными, в Каспийском море живут в мезогалинных условиях. Так, Candona schweieri и Leptocytthera lopatici, встреченные в Азово-Черноморском бассейне только в пресной воде, в Каспийском море обитают при солености 12,6%.

Лимнооби - виды пресноводного происхождения

IX. Виды пресноводного происхождения, которые, приспособив
шина к жизни в соленых водах, утратили способность жить в пресноводных водоемах и являются специфическими организмами соленных вод. К этой группе следует отнести Eucypris inflata. Маринов (Маринов, 1964 г.) относит его к ультрагаланичным видам на том основании, что он, якобы, предпочитает водоемы с ультрагаланичной соленостью. Действительно, E.inflata встречается почти во всех ультрагаланичных приморских водоемах, тогда как в мезогаланичных его можно встретить далеко не так часто. Однако он может жить и в мезогаланичных условиях. Так, в лимане Сухом при солености 8% он встречен нами в колоссальном количестве—до 14 000 экз/м² дна и в планктоне до 11 000 экз/м³. Даже при солености 2,8% E.inflata встречен в массовом количестве. Отсутствие E.inflata в некоторых мезогаланичных водоемах скорее всего объясняется складывающимися в них биоценотическими условиями. Возможно, E.inflata оказывается не в состоянии конкурировать с относительно богато представленной фауной и выживает только в тех водоемах, где фауна, в силу тех или иных причин, сильно обеднена (например, в периодически осоляющихся или пересыхающих водоемах). Интересно, что между E.inflata и Cyprinotus salina, характерным для мезогаланичных и олигогаланичных водоемов, вероятно, существует антагонистические отношения, при которых C.salina вытесняет E.inflata. Минимально возможная для жизни E.inflata и максимально возможная для жизни C.salina зоны солености в значительной степени перекрываются. Порознь в сходных условиях они могут встречаться в массовых количествах. Так, например, на косе Чушка мы наблюдали две лужи с одинаковой соленостью (5,4%), расположенные друг от друга на расстоянии 10 м, но одна из них была заселена E.inflata, а другая—C.salina. В одном и том же водоеме мы их обнаружили только однажды, при солености 3,5%. Эта соленость близка к минимальной, которая необходима для жизни E.inflata и благоприятна для C.salina, но даже в этих условиях E.inflata встречался в центральной части водоема, а C.salina — в прибрежной зоне. В условиях культуры мы наблюдали взаимоотношения между этими двумя видами, которые, как нам кажется, можно объяснить вытеснением E.inflata другим видом. Культура E.inflata, полученная из высушенного ила со дна лимана Сухого, существовала у нас в течение двух лет. Соленость воды в кювете, где жили остраракды, к сожалению, установлена не была, но со временем она возрастила, так как по нерегулярному испарению воды мы доливали водопроводную воду. Затем в эту же кювету мы поместили большое количество живых C.salina, и уже через
два месяца не могли обнаружить здесь ни одного экземпляра *E. inflata*; а особи *C. salina* прекрасно себя чувствовали и отложили много яиц на стени киветы у поверхности воды. За этой культурой мы наблюдали еще в течение года, но *E. inflata* так и не появилась.

Х. Галофилы — эвригаланические виды пресноводного происхождения, которые обычно встречаются в соленой воде, но могут жить и в пресных водоемах. К этой группе мы относим *Cyprindotus salina*, *Cyprindoopsis aculeata* и *Potamogeton steueri*. Обычно их считают галобионтами или специфическими солоноватоводными видами (Брунмей, 1947; Белянин, 1958; Маринов, 1964), но мы их встретили в пресных водах в довольно больших количествах. В пресной воде они были встречены только в тех водоемах, которые периодически осолоняются, и где, в силу этого, слабо выражена пресноводная фауна.

Виды, включенные в эту группу, соответствуют видам, относящимся к двум группам эвригаланических лимнобий (П и Ш), причем *C. aculeata* соответствует мейномезо-галическим лимнобионам, *C. salina* — плейомезо-галическим, а *P. steueri* — полигаланическим лимнобионам.

Выделенные нами группы острокод в зависимости от их эвригаланичности в общих чертах совпадают с группировкой средиземноморских моллюсков по эвригаланичности, предложенной Марсом (Mars, 1950). Марс выделил 9 групп, из которых нулевая и девятая — теоретические: группа 0 — морские стено-галические виды, которые не выносят никакого понижения солености, а 9 — виды, выносящие полное опреснение и осолонение. Группы 2—8 охватывают виды, выносящие то или иное опреснение. Из черноморских видов нет представителей первых трех групп, но группы 1, выделенные нами, в общих чертах соответствуют выделенной Марсом группе 4, P — соответствует 5, 6 — 6, 14 — 7, 14 — 8, а 14 близко к выделенной им 9 теоретической группе видов. Такое совпадение характера эвригаланичности отдельных групп азово-черноморских острокод и средиземноморских моллюсков нам кажется не случайным. Возможно, что группировка Марса отражает действительное соотношение фаунистических комплексов в зависимости от их эвригаланичности, характерное для многих морских организмов Средиземноморского бассейна.

Отношение к температуре

Черное и Азовское моря, будучи расположены в умеренном климатическом поясе, характеризуются значительными колебаниями температуры воды в зависимости от времени года. Для существования оте-
нотерных теплолюбивых видов здесь нет условий. Для стенотерной холоднолюбивой фауны такие условия имеются (в Черном море на глубине более 50 м в течение всего года сохраняется относительно низкая температура воды +7,7-8,5°C), но чтобы встретиться в Черном море, виды должны быть способны переносить температуру не ниже той, до которой охлаждаются глубинные океанические воды, то есть +2,5 - 3°C. Так что, обсуждая отношение к температуре азово-черноморских остроконей, можно говорить только о степени их эвритерности.

Об отношении азово-черноморских остроконей к температуре можно судить, исходя из особенностей их распространения и биологии, что позволило разбить их на три группы (см. таблицу).

1. Относительно теплолюбивые виды. К этой группе можно отнести 21 средиземноморско-лазитанский вид, распространенный только в Средиземном и Черном морях. Если взять за температурные пределы существования этих видов зимний минимум и летний максимум температуры воды в открытой части Черного моря, то они способны переносить колебания температуры от +6,6°C до +27°C. Об истинной максимальной температуре, при которой способны жить эти виды, говорить трудно. Судя же отмечено и все виды пресноводного происхождения, так как они являются "летними" формами. Встречаются они в теплое время года, размножаются в летние месяцы и зимуют в стадии яиц или в незакрытом состоянии.

2. Эвритерные виды, характерные для фауны умеренного пояса. Если считать нижним пределом их существования температуру замерзания солоноватых вод, а верхним — температуру, до которой прогреваются мелководья, то они способны переносить амплитуду колебаний температуры воды около 30°C. К этой группе относят 23 кельтский вид, распространенные в Атлантическом океане у берегов Англии и Норвегии, и 14 черноморских видов средиземноморского происхождения, живущих в Ульяновском лимане, который в зимние месяцы покрывается льдом, а в летние — сильно прогревается, а все 14 видов каспийского происхождения, живущих в эстуарных системах рек Азово-Черноморского бассейна.

3. Относительно холодолюбивые виды, распространенные в Атлантическом океане, включая и северное побережье Норвегии, в Средиземном и Черном морях живущие только на глубинах свыше 50 м. К этой группе можно отнести только два вида: Paracystis polita и Bythocythere turgida.

Для остальных видов и подвидов, являющихся азово-черноморскими эндемиками, отношение к температуре остается неясным.
Отношение к кислороду

Об отношении к кислороду азово-черноморских остракод мы располагаем очень небольшими сведениями. Четыре черноморских вида - Cytheridea acuminata, Leptocythere ramosa, L. multipunctata и Calistocythere flavidofusca - были обнаружены живыми на иле с запахом сероводорода; можно полагать, что они способны переносить дефицит кислорода. Для видов кашийского происхождения характерна окисленность, как и для других видов из этой фаунистической группы (Мордухай-Больтовская, 1960). Обитают они на песке или на серых "окисленных" илах и совершенно не встречаются в мелких побочных рукавах делет рек и пойменных озерах с черными "возстановленными" илями. Об остальных остракодах мы не решаемся сказать что-либо определенное.

Распределение остракод по биотопам

При установлении комплексов остракод, характерных для определенных биотопов, мы столкнулись со значительными трудностями. Наблюдалась большая общность форм для биотопов, зачастую сильно отличающихся друг от друга. Комплексы видов, характерные только для определенных биотопов, очень малочисленны; для некоторых биотопов вообще не представлялось возможным выделить характерные виды. На наш взгляд, дело здесь заключается не столько в эвритопности острого, сколько в неполноценности дночерепательных сборов для изучения отношения организмов мейобентоса к субстрату.

Для мейобентоса имеет большое значение многие детали характеристики субстрата, которые невозможно установить на основании дночерепательных проб, такие как характер соотношения различных микрослоев грунта, их гранулометрический состав, наличие и характер интересующих нас. Детальное изучение морского мейобентоса началось только в недавнее время, и поэтому еще не выработаны наиболее рациональные методы сбора этих организмов в условиях морских экспедиций.

Из всего разнообразия биотопов, наблюдаемых в Черном и Азовском морях, нами рассматриваются II, наиболее здесь распространенными (см. таблицу).

I. Интериостациональные воды. Этот биотоп в основном расположен выше уреза воды, но просчитывается до глубины 2-5 м, до нижней границы распространения "сахкоциррусного песка". Он характеризуется крайней степенью изменчивости факторов внешней среды. Соленость этих вод, например, может быть самой различной (от пресной до гипергалиной) в зависимости от интенсивности притока грунтовых вод.
и солености прилегающих водосборов. Температура может сильно изменяться в зависимости от времени суток и времени года. Содержание кислорода также сильно колебаться в зависимости от накопления органических веществ и сили прибои. В интерстициали обнаружено 7 видов: Loxoconcha nana, Microcythere varrenslia, M.longian-tennata, Parvocythere hartmanni, Leptocythere multipunctata, L. histrionica, Loxoconcha pontica. Последние три не характерны для этого биотопа и, возможно, случайно вынесены сюда прибоем, особенно это относится к фитофильному виду L. pontica.

П. Обрастания прибрежных скал и неподвижных камней. Этот биотоп, начинаясь в псевдолиторали, опускается в открытых частях моря иногда на глубину до 28 м, обычно же до глубины около 15 м, а внутри бухт до глубины нескольких метров. В обрастаниях господствуют заросли цистозиры, которые дают приют 29 фитофильным видам. Большинство из них встречается на различной глубине, но некоторые виды (Callistocythere mediterranea; Loxoconcha rhomboidea (мерная вариация), L. pontica, Hemicytherura bulgarica, Xestoleberis decipiens, X. acutipenis) предпочитают прибрежную зону с постоянным прибоем, иногда достигающим значительной силы, и встречаются в массовых количествах, а на глубине свыше 5 м количество их резко падает. Другие виды (Heterocythereis reticulata, L. rhomboidea (крупная форма), Hemicytherura videna, Paradoxostoma simile, P. guttatum) предпочитают заросли, расположенные более глубоко, где влияние прибоев ослаблено. Между скалами и камнями, покрытые обрастаниями, располагаются песчанистые грунты, где живут посмофильные виды.

Ш. Заросли Zostera распространены в бухтах и заливах, в более спокойных и защищенных от действия волн местах на глубине до 5,5 м даже 9 м, на песчанистых, илисто-песчанистых и иллистых грунтах. Наиболее характерны для зостеры Loxoconcha bulgarica, Paracythereis naviculum и P.convexum, среди других растений эти виды встречаются редко. Здесь обитают Loxoconcha pontica, Hemicytherura bulgarica, Xestoleberis decipiens, Cythereis valcanovi, Paradoxostoma intermedium, встречающиеся в массовых количествах, а некоторые другие виды, обычные среди обрастаний на скалах. На грунте среди растений живут поаммо- и пеллофильные виды: Leptocythere devesa, L. multipunctata, Microcythereura nigrescens, Semicytherura euxinica, Xestoleberis cornellii.

IV. Мелкий плотный песок встречается, начиная с глубины 2-5 м до 25-30 м. Наиболее характерны для этого биотопа Pontocythere
bacescoi, Cytherois carcinita, Microcytherura nigrescenta, M. fulvoidea, Leptocythere raga, L. devexa (бугристая форма), L. multipunctata (буристая форма), Levocyctherura pontica, S.euxinica, S. calamitica. Другие виды встречаются реже или в меньших количествах, чем в других биотопах. Здесь же встречены и некоторые фитофильные виды (Loxococcha rhomboidea, Paracytherois agigensis), вероятно, случайно попадающие на песок с водорослей.

У. Амфиокусный песок — крупный песок, состоящий из битой ракушки и сравнительно крупных песчинок, характеризующийся значительной подвижностью верхнего слоя и ярко выраженными интерстициями. Он распространен на глубине, начиная с 5—8 до 25 м. Наиболее типичны для этого биотопа Polyscope frequens, Callistocythere abjecta, Urcythereis margaritifera, Loxoconcha pennata, Paracytheridea paulii, Levocyctherura remanei, Pseudocytherura pontica. Здесь же встречаются все виды, характерные для биотопа плотного влажного песка, но несколько реже, и единичные экземпляры видов, предпочитающих больших или меньших заливение.

У1. Ракушечник — скопление живых и мертвых, преимущественно двусторончатых моллюсков — тянется более или менее широкой полосой у нижней границы зоны песка. Этот биотоп заселен, с одной стороны, формами, характерными для песчанистых грунтов, а с другой, — для илистых.

У2. Илистый песок, в большой или меньшей степени заиленный, встречается в зависимости от характера берега на глубине от 2 до 40 м. Для илистых песков на глубине до 20 м характерными можно считать Leptocythere nitida, Semicyctherura virgata, а на глубине свыше 20 м — Pontocythere tchernjewskii, Callistocythere flavidofusca. На этих же песках, в зависимости от степени заиления, встречаются формы, более характерные для песков и иллов.

У3. Или на глубине 40—60 м представлены различными разновидностями: мелкобереговой и распространенный обычно в глубине заливов и бухт, его верхняя граница поднимается до 3—II м, а иногда даже до I м; наиболее мощные иловые отложения представлены мидаевым илом, обычно распространяющимся на глубине 25 — 60 м; теребеллиальный ил заменяет в некоторых местах мидаевый ил или располагается несколько глубже его; часто или на этих глубинах бывают достаточно плотными (глинистым, песчанистым ил). На илах на глу-
бинах 40-60 м острокоды достигают наибольшего развития в количественном отношении. Здесь в больших количествах встречены Cytheridea acuminata (I6 680 экз./м²), Leptocythere ramosa (4300 экз./м²), L. multipunctata (гладкостенная форма) (12220 экз./м²), Carinocythereis rubra (2700 экз./м²), Loxoconcha granulata (640 экз./м²). Характерными для илов являются также Callistocythere diffusa, Leptocythere devesa (гладкостенная форма), Carinocythereis carinata, Xestoleberis corne-lli, хотя они и встречаются в несколько меньших количествах. Здесь же отмечены обычные на илистом песке Pontocythere tcher- njakowski, Callistocythere flavofusca и др. В пробах, взятых на илистых грунтах, обнаружены виды: Cytheroma variabilis, C. karadaginis, Loxoconcha rhomboidea (крупная форма), Cytherois valcanovi, C. niger, Paradoxostoma gutta- tum, P. simile, Sclerocochilus gewemülleri, имеющие га- битус форм, характерных для биотопа обрастаний. Эти виды встречаются также и в зоне фитали, причем два последних вида в зоне илов встречены в значительно большем количестве, чем среди прибрежных растений. Скорее всего, в условиях этого биотопа они заселяют губки и гидроиды, которые достигают здесь большой численности, густо покрывая раковины моллюсков, а также водоросли, которые изредка поселяются вместе с гидроидами.

IX. Фазеолиновый ил распространяется, начиная с глубины 40-60 м. Этот биотоп мы обследовали до глубины 100 м. Здесь наблюдается довольно резкое обеднение фауны острокод как в количественном, так и качественном отношении. Характерными для фазеолинового ила являются Bythocythere turgida, который не встречается в других биотопах, и Polycope frequens, достигающий здесь большой численности, чем на амфиоксуменном песке. На фазеолиновом иле обитают также другие пелагофильные виды, достигающие большой численности в выше расположенных илах (Cytheridea acuminata, Leptocythere ramosa, L. multipunctata, Xestoleberis cornelli, Callistocythere diffusa, Carinocythereis rubra, Loxoconcha granulata и др.), а также виды, характерные для обрастаний: Cytheroma variabilis, Sclerocochilus gewemülleri, Paradoxostoma simile.

В районе Прибосфорья, на границе мицевого и фазеолинового илов, на глубине 68-98 м, обнаружены Buphilomodes interpuncta, Paracypris polita, Buntonia subulata rectangularis, Costa edwardsii runcinata, Cytheropteran rotundatum и створки...
еще восьми видов, не обитающих в других частях Черного моря. По-сколько в районе Прибофория обследован только этот биотоп, то остается неизвестным, действительно ли эти виды характерны для илов или они предпочитают другие биотопы.

X. Лиманы — мелководные приморские водоемы с сильно колеблющейся соленостью воды в зависимости от большего или меньшего притока морской и пресной воды и испарения. В прибрежной зоне есть заросли звезды, рулин, а в более опресненных местах — заросли рдеста и урути; центральная часть лиманов в большинстве случаев занята илами. Лиманы населены наиболее эвригалсоными видами. В прибрежной зоне среди водорослей, а также на песчаных и слабоозелененных грунтах встречаются в большом количестве Leptocythere histriana, Loxoconcha elliptica, L. aestuarii, Xestoleberis aurantia, Cytherois cerda, Cyprideis torosa, Potamocryptis steueri. Илиственные грунты в центральной части лиманов заасфальтированы исключительно C. torosa var. littoralis. Этот же комплекс острокод характерен и для Азовского моря, которое представляет собой, по существу, обширный слабосоленый лиман Дона. В замкнутых лиманах, особенно, когда в них сильно повышена соленость, наряду с перечисленными видами в большом количестве встречается Eucypris inflata, а в опресненных участках, в районе владения реки или ручьев, обитают Cyprinotus salina и Cypridopsis aculeata. Лиманный комплекс острокод встречается не только в лиманах, но и в наиболее мелководных участках вершин бухт, но всегда в местах, где соленость воды сильно отличается от черноморской, а резко сокращается количество морских видов.

XI. Эстуарии крупных рек характеризуются развитием фауны каспийского происхождения, где совместно с каспийскими видами встречается Cyprideis torosa, а также пресноводные виды. В нижнем течении рек каспийские виды распространяются в виде отдельных очагов. В районах аванделт они заселяют плотные песчанистые или иллисто-песчанистые грунты, расположенные в пресноводной и олигогалоноской зонах. В Таганрогском заливе только три каспийских острокод (Leptocythere quinquestuberculata, L. cymbula, L. reticulata) заходят в район с соленостью воды до 3,5—5%. (район Крымской), где совместно с ними обитают наиболее эвригалсоные из средиземноморских видов — представители лиманного комплекса Loxoconcha aestuarii и Leptocythere histriana, но и те и другие здесь встречаются в очень небольшом количестве. Наиболее массовая форма Таганрогского залива — C. torosa. В районе аван-
дельты Дуная и в Днестровском лимане в мейомерозогалинной зоне совместно с C. tosca в большом количестве встречается специфический солоноватоводный вид Cytheromorpha fuscata.

Литература

БРОНШТЕЙН З.С. Ostracoda пресных вод. — Фауна СССР. Ракообразные, 2, 1, 1947.
КАРАЙОН Ф.Е. Некоторые специальные вопросы, связанные с нынешним состоянием изучения фаяны ракообразных (Ostracoda) в Понтокаспийском бассейне. — Rev. biol. R.P.R., 7, 3, 1962.
ХАРИН Н.Н. Зообентос и зоопланктон Кубанских лиманов и их изменение при опреснении лиманов. — В кн.: Тр. АзЧерНИРО, 15, 1951.
РАЗМНОЖЕНИЕ И РАЗВИТИЕ СКАЛЬНОЙ И ИЛОВОЙ МИДИЙ В ЧЕРНОМ МОРЕ

Г.А.Киселева

Черноморские мидии чувствительны к влиянию различных факторов среды и образуют целый ряд экологических разновидностей, обитающих на различных глубинах и субстратах. Эти разновидности, как отмечает К.О.Миаляшевич (1916), не являются устойчивыми систематическими единицами, но в достаточной мере характеризуют главнейшие видоизменения, вызванные условиями обитания. Строгой приуроченности разновидностей мидий к определенным фациям почти не наблюдается. Исключение составляют var. trepida, всегда живущая на скалах в прибойных местах, и var. frequens, обитающая на ми- диевом иле. Остальные разновидности мидий встречаются на различных фациях (Воробьев, 1938).

Характер взаимосвязи между варияциями черноморской мидии привлекал внимание многих исследователей. Большинство авторов считают, что в Черном море обитает один вид мидии — Mytilus