ЭКОЛОГИЯ
МОРЯ

1871

ИНБЮМ

20
1985
A. M. SHCHERKINA

EFFECT OF PROCTOECES MACULATUS ON GLYCOGEN CONTENT AND LIPID COMPOSITION OF THE BLACK SEA MUSSEL TISSUES

Summary

Experimental data are presented on glycojen content and certain lipid fractions in the Black sea mussel tissue in connection with high invasion by trematode sporocysts.

Invasion by Proctoecesmaculatus sporocyst is established to cause an acute decrease in triglyceride and glycojen accumulation in hepatopancreas and gonads of infected mussels.

В. К. МАЧКЕВСКИЙ, А. М. ШЕПКИНА

ЗАРАЖЕНОСТЬ ЧЕРНОМОРСКИХ МИДИЙ ПАРТЕНТИТАМИ PROCTOECES MACULATUS ИХ ВЛИЯНИЕ НА СОДЕРЖАНИЕ ГЛИКОГЕНА В ТКАНЯХ ХОЗЯЕВ

Вопрос о воздействии partenит, церкарий и метацеркарий trematod на организм хозяина представляет теоретический и практический интерес, поскольку указанные стадии развития trematoda оказывают больший патогенный воздействие на организм хозяина, чем мариты этих же видов [1, 2].

Трематоды Proctoeces maculatus Odhner, 1911 (Fellodistomatiidae) — не только широко распространенные представители своего семейства, но и, как установлено нашими исследованиями, возбудители гельминтозного заболевания черноморских видов Mytilus galloprovincialis Lam, представляющих собой один из перспективных объектов отечественной марикультуры [7]. В связи с этим возникает необходимость наиболее полно исследовать жизненный цикл, биологию и экологию trematod P. maculatus, их взаимоотношения с хозяином.

Авторы поставили своей целью проследить некоторые моменты паразит-хозяйных отношений midий и partenит P. maculatus на протяжении годового цикла и выявить влияние зараженности гельминтами на содержание гликогена в тканях моллюсков, поскольку жизнедеятельность моллюсков и их пищевая ценность определяются запасами питательных веществ в их теле, в частности запасами гликогена [8].

Гликоген является также одним из важнейших энергетических материалов, используемых partenогенетическими поколениями trematod [3].

Материалом для настоящего сообщения послужили исследования, проведенные нами в районе Егорлыкского моллюсковоского хозяйства в естественной популяции midий в период 1980—1981 гг. Наблюдения были охвачены годовой цикл midий и partenогенетических поколений P. maculatus. Для partenит отмечены периодические сезонные изменения качественного и количественного составов. Исследования проводились по общепринятым методикам [2]. Содержание гликогена в тканях
мидий определяли по методике Срымвасана [11]. Всего исследовано 1560 экз. мидий. Типичными местами локализации партенит оказались гепатопанкреас и мантия, составляющие основу биомассы мягких тканей мидий. В течение года интенсивность инвазии мидий партенитами составила 10—25000 экз. в одной особи, экстенсивность — 5,3—19,5 %.

Для оценки влияния паразитов на запасы гликогена мидий рассмотрим наиболее характерные черты биологии видов, составляющих настоящую паразит-хозяйниную систему. В течение года для жизненного цикла мидий характерны два периода размножения в исследуемом районе. Весной в мелководном Егорлыкском заливе из-за низких температур нерест мидей начинается в мае — именно в этот период наблюдалась основная масса мидей со зрелыми гонадами (готовыми к вымету половых продуктов) — и продолжается в июне, частично захватывая июль. Второй период размножения начинается в сентябре и продолжающийся до ноября.

Характеризуя partenогенетическое поколение P. maculatus, необходимо отметить следующие особенности жизненного цикла этой трематоды. Трематоды являются поликменскими видами, в жизненном цикле которых обязательна смена хозяев, без смены хозяев невозможны сохранение и распространение паразита как вида. P. maculatus использует в своем цикле три типа хозяев. Первым промежуточным хозяином для нее служат мидии различных видов, в чем проявляется достаточно узкая специфичность паразита к промежуточному хозяину. В мидиях живут несколько partenогенетических поколений трематод, конечной целью которых являются продукция и выделение в среду расселительных личинок — церкарий. Вышедшие в воду церкарии отыскивают и заражают дополнительных хозяев, к которым относится широкий круг водных беспозвоночных (гастрооподы, полихеты). За время паразитирования в дополнительных хозяевах церкарии превращаются в метацеркарий, которыми заражаются окончательные хозяева P. maculatus — рыбы семейств Labridae, Sparidae, употребляющие в пищу названных беспозвоночных. В рыбах метацеркарии превращаются в март. В результате полового размножения март в среду высвобождаются яйца, содержащие мирицидии (второй тип расселительных личинок трематод), которыми заражаются мидии. Таким образом жизненный цикл P. maculatus замыкается [6, 10].

Размножение и развитие partenогенетических поколений P. maculatus в черноморских мидиях носит выраженный сезонный характер (рис. 1). По этому признаку можно выделить два периода в жизни партенит, определенным образом отличающихся друг от друга. В зимне-весенний период в мидиях развивается несколько генераций дочерних спороцитов. Характерной особенностью этого периода жизни партенит является то, что все дочерние поколения представлены в основном дочерними спороцитами, которые, выйдя из материального организма в ткани хозяина, вновь продуцируют дочерних спороцитов. Лишь изредка в это время в дочерних спороцитах можно встретить единичных крупных церкарий (рис. 1). Этот период в цикле развития паразита в целом можно считать относительно спокойным. В это время в мидиях происходит накопление дочерних спороцитов. В конце весны с повышением температуры воды и появлением прибрежной зоны дополнительных и дефинитивных хозяев P. maculatus в дочерних поколениях спороцитов все чаще обнаруживаются расселительные личинки — церкарии.

Летне-осенний период в жизни P. maculatus занимает особое место, поскольку именно в этот период осуществляются остальные две трети жизненного цикла паразита. В течение этого времени перезимовавшие спороциты в массе продуцируют церкарий (см. рис. 1). Количество самих спороцит при этом значительно возрастает (рис. 2). В летне-
осенний период партениты более всего нуждаются в потреблении гликолен и других питательных веществ, необходимых для роста и разви-

70
тия церкарий, для которых гликоген — питательное вещество. Вышедшие во внешнюю среду церкарии не питаются и живут в воде свыше трех суток в поисках дополнительного хозяина [7]. Нами установлено, что продолжительность жизни церкарий Proctoeces maculatus в морской воде можно увеличить, добавив слабый раствор глюкозы [7]. Таким образом,

Рис. 1. Сезонная динамика качественного состава спороцист Proctoeces maculatus:
1 — спороцисты, содержащие дочерних спороцист; 2 — спороцисты, содержащие дочерних спороцист и церкарий; 3 — спороцисты, содержащие церкарии.

Рис. 2. Сезонная динамика индекса обилия partenit Proctoeces maculatus и изменение интенсивности заражения ими мидий:
1 — интенсивность инвазии; 2 — индекс обилия.

существование в открытой среде личинок паразита, сопряженное с активным поиском дополнительного хозяина, обеспечивается запасами гликогена в тканях личинок, накопленными за время нахождения в материнском организме спороцист. Подобные явления описаны Т. А. Гищенской для других видов троматод [3].

Зимой содержание гликогена в гепатопанкреасе и мантии зараженных и незараженных мидий невелико, однако в мантии зараженных моллюсков концентрация гликогена на 22 %, а в гепатопанкреасе — на 50 % ниже, чем у незараженных (рис. 3, a, b). Низкая концентрация гликогена в тканях зараженных мидий зимой может быть объяснена низкой пищевой активностью мидий, характерной для митиллид зимой [9]. В это время в тканях зараженных мидий наблюдается самая низкая численность partenit (см. рис. 2) и представлены они в основном спороцистами, содержащими дочерних спороцист (см. рис. 1). Это свидетельствует о том, что темпы размножения partenit при низких температурах весьма замедлены.

В преднерестовый период в тканях мантии и гепатопанкреасе зараженных мидий наблюдается значительное увеличение концентрации гликогена, связанное с подготовкой моллюсков к размножению. К этому времени с потеплением воды увеличивается потребление пищи мидиями и интенсифицируются процессы размножения partenit (см. рис. 2). Динамика содержания гликогена в этот период у зараженных мидий имеет ту же направленность, что и у незараженных. Различия наблюдаются лишь в концентрации гликогена в тканях моллюсков. Содержание гликогена в мантии зараженных мидий в этот период ниже на 49 %, в гепатопанкреасе — на 30 %, что связано, видимо, с активным потреблением гликогена интенсивно размножающимися partenитами.

Значительные различия в содержании гликогена в тканях наблюдаются в нерестовый период (рис. 3, a, b). Содержание гликогена в мантии зараженных мидий ниже на 56 %, а в гепатопанкреасе — на

71
70 % по сравнению с незараженными мидиями. Одновременно увеличивается плотность популяции partenит в милях (см. рис. 2) и в среду интенсивно выделяются церкарии. С середины лета в исследуемой популяции мидий начинают попадаться погибшие мидии, в теле которых находятся еще живые спороцисты P. maculatus. Как отмечает К. Кеннеди, именно в период продуцирования partenитами церкарий паразиты наносят максимальный вред хозяеву-мollюску, поскольку истощение запасов гликогена, а также механические повреждения тканей, наносимые хозяеву выходящими личинками, сильно ухудшают его состояние, часто приводя к преждевременной гибели [5].

В конце октября содержание гликогена в тканях мидий значительно уменьшается (рис. 3). Для незараженных моллюсков это совпадает с завершением репродукционного периода. Что касается зараженных мидий, то в это время их ткани гиперинвазированы partenитами, и на этот период приходится самая высокая численность partenит в популяции мидий (см. рис. 2). Осенью наблюдается наиболее массовый выход церкарий в воду и соответственно этому в мантии и гепатопанкреас зараженных мидий наблюдается самое низкое содержание гликогена. В гепатопанкрее эта разница по сравнению с незараженными мидиями составила 58 %, в мантии — 77 %.

Таким образом, прослеживая динамику содержания гликогена в тканях зараженных и незараженных мидий, можно отметить, что partenиты P. maculatus значительно снижают содержание гликогена в гепатопанкрее и мантии мидий, приводя к кастрации моллюсков. Кастрация мидий, по-видимому, происходит в результате не только механического нарушения тканей мантии, вызываемого локализацией паразитов, но и усиленного потребления partenитами гликогена, необходимого для нормального функционирования гонад.

Проведенное исследование показало, что годичный цикл partenогенетических поколений P. maculatus тесно связан с репродукционным циклом хозяев. Одним из факторов, определяющих характер, темпы размножения и развития partenит, можно считать сезонную динамику содержания гликогена в тканях гепатопанкреаса и мантии, где локализуется основная масса спороцист.
1. Бурак О. Н., Мусселиус В. А., Николаева В. М., Стрелков Ю. А. Ихтиопатоло-
2. Высоковская-Павловская И. Е. Паразитологические исследования рис. — Л.: Нау-
3. Гинецкаяская Т. А. Трематоды, их жизненные циклы, биология и эволюция. — Л.: Нау-
4. Долихов В. Л. Личники трематод — паразиты моллюсков Крымского побережья
6. Мачковский В. К. Некоторые аспекты биологии трематод Proctoeceus maculatus
в связи с организацией мицевых хозяйств на Черном море. В кн.: Симпозиум по парази-
tологии и паразитозам морских организмов (Ленинград, 13-16 октября 1981 г.): Тез. докл.
7. Мачковский В. К., Паухин А. М. О биологии трематод семейства Felldistomati-
daе, паразитирующих у черноморских мидий. — Паразитология, 1981, 15, № 2,
c. 181–184.
8. Стаднийченко А. П. Патогенное воздействие партенит трематод на пресноводных
9. Цихон-Луканича Е. А. Питание митилл (Bivalia mytilidae). — В кн.: Промысло-
вые двустворчатые моллюски-миди и их роль в экосистемах. Л.: Изд-во Зоол.
ин-та, 1979, с. 124–125.
10. Prevot G. Complement a la connaissance de Proctoeceus maculatus (Loos, 1901)
Odhner, 1911 (Syn. P. erythraeus Odhner, 1911) et P. sutenius (Linton, 1907)
1965, 90, p. 175–179.
11. Srimsawan V. Y., Krishnaswany S. A. A simple method of determination of glycogen

Ин-т биологии юж. морей
им. А. О. Ковалевского АН УССР, Севастополь
Получено 01.06.82

V. K. MACHEKEVSKY, A. M. SHCHERPKINA

INFECTION OF THE BLACK SEA MUSSELS BY PROCTOECEUS
MACULATUS AND THEIR INFLUENCE ON GLYCOCEN
CONTENT IN HOST TISSUE

Summary

A high infection of the Black sea mussels by parthenogenetic generations of Pro-
toeceus maculatus is established. The most important moments of biology and develop-
ment of parthenitis in mussels are detected. Dynamic of the glycogen content in tissues
of both infected and noninfected mussels is observed. P. maculatus invasion is establi-
sed to decrease considerably the glycogen content in hepatopancreas and mantle of
mussels and leads to their castation. A relation is observed between the biology of par-
thenite development and seasonal dynamic of the glycogen content in the mussel
tissues.

УДК 594.1:577.4(362.5)

Т. В. МИХАЙЛОВА

МОРФОМЕТРИЧЕСКИЙ АНАЛИЗ РАКОВИНЫ
CERASTODERMA GLAUCUM (MOLLUSCA, BIVALVIA)

Представители рода Cerastoderma характеризуются значительной
изменчивостью размеров и формы раковины. Изучение индивидуальной
и популяционной изменчивости позволяет довольно точно выделить
границы таксонов видового ранга и тем самым уточнить систематичес-
кий состав рода. С этой целью проведен морфометрический анализ ряда
основных показателей раковины вида Cerastoderma glaucum. К сожа-
ленню, нет возможности сравнить полученные данные по морфометрии
с аналогичными показателями других видов церастодерма в Черном
море из-за отсутствия специальных работ по этой группе.

Массивный материал для морфометрического анализа собирали в
кутовых частях бухт в окрестностях Севастополя. Местоположение
станций выбирали так, чтобы существовал градиент солености. Всего

73