ЭКОЛОГИЯ МОРЯ

1871

ИНБЮМ

26

1987
ТЕМПЕРАТУРНЫЕ ЗАВИСИМОСТИ ЭКОЛОГИЧЕСКИХ ПРОЦЕССОВ

УДК 595.3 591.12.383

Г. И. АБОЛМАСОВА

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ИНТЕНСИВНОСТЬ ОБМЕНА И СКОРОСТЬ РОСТА ИЗОПОДЫ SPHAEROMA SERRATUM FABR.

Исследовано действие температуры на скорость роста и обмен у изоподы Sp. serratum Fabr. — типичного обитателя прибрежной зоны морей Средиземноморского бассейна и восточного побережья Атлантического океана. В летне-осенний период в пределах узкой полосы на границе моря и суши численность и биомасса этих ракчаков достигают значительных размеров.

В Черном море в бухте Омега, вблизи Севастополя, по данным Е. Б. Маккавеевой [4], максимальная численность сфером составляла 400 экз./м². Благодаря большой численности и круглогодичному развитию локальных популяций этот вид должен играть важную роль в процессах круговорота вещества и энергии и определении продуктивности прибрежной зоны моря. Вместе с тем экология сфером в Черном море изучена недостаточно.

Материал и методика. Для опытов использовали живых, собранных в бухте Омега в период с января 1977 г. по апрель 1978 г. при температуре 5; 8; 15 и 23 °C. После сортировки живых помещали в константные температурные условия, поддерживаемые в камерах полимеристата с регулируемой температурой (±0,5 °C). Температура, при которой проводили опыты, соответствовала наблюдаемой в данный период в природе. Эксперименты проведены на животных с сырой массой тела 3,0 — 87 мг, устанавливающейся на аналитических весах с точностью 0,1 мг. Интенсивность дыхания измерена у 91 ракчак методом замкнутых сосудов при экспозиции в течение 3—5 ч. В качестве резервуаров использованы склянки объемом 100—120 мл, которые заполнялись предварительно отфильтрованной мorskой водой. Содержание кислорода в воде определяли методом Винкlera. В конце опыта изменение содержания в воде кислорода составляло не более 30% исходного.

Скорость роста изучена при тех же температурах у ракчаков трех размерных групп со средней сухой массой тела, равной 1,82; 4,39; 13,18 мг. В качестве корма использовали водоросль Enteromorpha intestinalis. Ракчаков содержали индивидуально в стеклянных кристаллизаторах. Одновременно следили за ростом сфером всех возрастных групп, представляющих популяцию в данный момент в естественных условиях. Животных взвешивали сразу после первой и второй линек в экспериментальных условиях. Разница в массе тела давала величину прироста за межлиничной период. Продолжительность межлиничного периода у всех возрастных групп уменьшалась по мере повышения температуры. Всего исследовано 79 ракчаков.

Результаты и обсуждение. Полученные нами данные (рис. 1) описаны степенным уравнением \(R = a W^b \), где \(R \) — скорость потребления кислорода животными данной массы; \(a \) — скорость потребления кислорода при массе ракчака, равной единице; \(W \) — сухая масса тела животного, \(a \) и \(b \) — коэффициенты. Статистическая обработка данных приведена в табл. 1.
Полученные данные по скорости обмена сфером сопоставлены с имеющимися в литературе по дыханию этих животных. Так, по данным Е. Б. Маккавеевой [4], сферома массой 2,2 мг при колебаниях температуры 21—24 °C расходует на дыхание за сутки 0,186 кал, по нашим данным, ракок с массой 2,5 мг при температуре 23 °C — 0,187 кал. Как видно, величины очень близкие. По данным Д. Шахтер [7], уравнение скорости потребления кислорода у Sphaeroma hookeri Leach. при температуре 20 °C в расчете на сухую массу (мг) имеет следующие значения: \(R = 0,0036 \cdot W^{0,61} \). Наше уравнение при 23 °C \(R = 0,0024 \cdot W^{0,69} \).

На основании экспериментальных данных по росту рассчитан среднесуточный абсолютный прирост сфером разного размера при исследуемых температурах:

\[
\frac{W}{t} = \frac{W_2 - W_1}{t_2 - t_1},
\]

где \(W \) — прирост, мг сухой массы тела; \(W_1 \) и \(W_2 \) — начальная и конечная сухая масса раков, определяемая за соответствующий отрезок времени \(t_1 \) и \(t_2 \).

Общий ход кривых суточного прироста сфером при 5,8 и 15 °C (рис. 2) повторяет закономерность, известную и для других ракообразных [1, 4]. Первоначально прирост возрастает, достигая максимума при сухой массе ракка 10—15 мг, а затем, с увеличением массы, падает. Величины же суточных приростов при высоких температурах почти не изменяются у трех размерных групп. Как видно (из данных рис. 2), с увеличением температуры суточные приросты повышались, за исключением \(t=23 ^\circ C \). У самых мелких раков скорость роста была выше, чем у этой размерной группы при 15 °C, у второй и третьей размерных групп приросты не изменились.

Суточная удельная скорость роста \(\bar{C}_w \) за период \(t_2 - t_1 \) рассчитана по формуле

78
<table>
<thead>
<tr>
<th>Масса тела, мг</th>
<th>т₀, °C</th>
<th>1gа ± S 1g а</th>
<th>b ± Sb</th>
<th>R = аWᵇ</th>
<th>r</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,38—22,44</td>
<td>5</td>
<td>-3,071±0,064</td>
<td>0,76±0,04</td>
<td>0,00085·W₀,76</td>
<td>0,372</td>
<td>19</td>
</tr>
<tr>
<td>1,49—23,32</td>
<td>8</td>
<td>-2,945±0,050</td>
<td>0,70±0,04</td>
<td>0,0011·W₀,76</td>
<td>0,977</td>
<td>15</td>
</tr>
<tr>
<td>1,12—17,45</td>
<td>15</td>
<td>-2,834±0,140</td>
<td>0,78±0,08</td>
<td>0,0015·W₀,78</td>
<td>0,877</td>
<td>26</td>
</tr>
<tr>
<td>0,61—14,27</td>
<td>23</td>
<td>-2,621±0,038</td>
<td>0,69±0,02</td>
<td>0,0024·W₀,69</td>
<td>0,991</td>
<td>31</td>
</tr>
</tbody>
</table>

Примечание. W — сухая масса тела, n — количество измерений, r — коэффициент корреляции.

\[
\bar{C}_{W} = \frac{\lg W_{2} - \lg W_{1}}{(t_{2} - t_{1}) 0,4343},
\]

где \(W_{1}\) и \(W_{2}\) — сухая масса рачка соответственно до и после линьки, мг; \((t_{2} - t_{1})\) — межленииный период, сут; 0,4343 — коэффициент для перевода в десятичные логарифмы.

Средняя удельная скорость роста для всего размерного диапазона животных находилась в пределах 0,002—0,0155 мг·сут при 5 °C, 0,005—0,013 — при 8 °C, 0,015—0,053 — при 15 °C и 0,023—0,061 мг·сут⁻¹ при 23 °C.

Как видно из рис. 3, с увеличением температуры скорость роста сфером закономерно возрастает.

На основании полученных данных об обмене и росте сфером рассчитаны траты энергии на энергетический и пластический обмен для всех размерных групп. При температуре 5—8 °C (рис. 4) идет незначительное увеличение трат энергии на прирост у II и III размерных групп, что объясняется, вероятно, низкими температурными условиями, а первая младшая размерная группа даже снижает это время свои приросты. При повышении температуры от 8 до 15 °C отмечается значительное увеличение затрат энергии на рост, в основном соматический, так как при этих температурах ракчи еще не приступили к размножению. В интервале 15—23 °C у неразмножающейся группы траты на прирост возрастают, а у старшей II и III группы начинают снижаться. Это связано с тем, что, как указывает Е. Б. Маккавеева [4], при температуре 19,5 °C начинается массовое отроджение молоди, общий вес которой

![Diagram](image-url)
Рис. 3. Зависимость удельной скорости роста \((C_w) \) сфером от температуры

Рис. 4. Изменение прироста \((P, \text{кал.экз.}^{-1} \times \text{сут}^{-1}) \), трат на обмен \((R, \text{кал.экз.}^{-1} \times \text{сут}^{-1}) \) и эффективности роста \((K_2) \) у трех размерных групп сфером от температуры. Пунктирная линия — \(K_2 \) у II размерной группы с учетом генеративной продукции

в момент выхода из марсупиальной сумки равен примерно половине или более массы самки. В связи с этим происходит перераспределение энергии пластического обмена: скорость соматического роста падает, и вся энергия идет на генеративный рост.

Траты на энергетический обмен увеличиваются с возрастанием температуры. Более плавное увеличение наблюдается у I и II групп, более резкое — у III размерной группы. Изменение соотношения прироста и трат на обмен определяет динамику коэффициен-
<table>
<thead>
<tr>
<th>Масса тела, г</th>
<th>Температура, °C</th>
<th>lg m ± Sig m</th>
<th>p ± Sp</th>
<th>r</th>
<th>А = m WP</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,98—22,44</td>
<td>5</td>
<td>-0,818 ± 0,043</td>
<td>0,638 ± 0,055</td>
<td>0,941</td>
<td>А = 0,152 W^0,50</td>
<td>17</td>
</tr>
<tr>
<td>0,95—26,31</td>
<td>8</td>
<td>0,741 ± 0,061</td>
<td>0,641 ± 0,036</td>
<td>0,966</td>
<td>А = 0,181 W^0,68</td>
<td>23</td>
</tr>
<tr>
<td>0,91—20,31</td>
<td>15</td>
<td>0,391 ± 0,115</td>
<td>0,682 ± 0,082</td>
<td>0,866</td>
<td>А = 0,407 W^0,68</td>
<td>23</td>
</tr>
<tr>
<td>1,06—20,02</td>
<td>23</td>
<td>-0,241 ± 0,074</td>
<td>0,651 ± 0,042</td>
<td>0,924</td>
<td>А = 0,574 W^0,48</td>
<td>16</td>
</tr>
</tbody>
</table>

Причесание. W — сухая масса тела, n — количество измерений, r — коэффициент корреляции.

щелогодной генерации к началу осени почти все отмирают. Основная масса самцов элиминирует с конца мая по июль. Это дает возможность предположить, что исследуемые нами рачки в диапазоне 15—23° были представлены самками. По данным Е. Б. Макакеевой [4], перед выходом из марупиальной сумки вес эмбрионов составляет 8,9 мг при массе тела самки 18,1 мг. Это приблизительно средняя масса особи нашей П размерной группы. Известно, что сухая масса эмбрионов составляет около 20% сырой, а их калорийность равна 5 кал.-мг⁻¹ сухого вещества⁻¹. Эмбриональный период у ферм при температуре 15—23° составляет около 45 сут. Тогда траты энергии на генеративный рост в среднем у П размерной группы составляют 0,2 кал./сут. Суммируя величину соматического и генеративного роста для этой группы, получаем P, равный 0,49, что показано пунктиров на рис. 4. Если рассчитать K₂ для этой группы с учетом генеративной продукции, то он составит 0,36 вместо 0,22, рассчитанных без учета генеративного роста.

Полученные данные об обмене и росте сфером позволяют рассчитать зависимость величины ассимилированной энергии пищи (А) от массы тела у этих рачков при 5; 8; 15 и 23°С в данных условиях питания. Как известно, А = P + R, где A — ассимилированная энергия; P — прирост; R — траты на обмен, выраженные в энергетических единицах (кал.-экз.⁻¹ сут⁻¹) и просуммированные для каждой температуры соответственно. При переводе трат на обмен и суточных приростов в единицы энергии оксикалорийный коэффициент был принят за величину 4,86 кал.-мл О₂, а калорийность тела сфером — соответственно для каждой размерной группы и температуры. Калорийность занимала от 2,52 до 3,48 кал.-мг сухой массы тела, зольность составляла 31—40%, сухая масса от сырой — 25,5—31,2, в среднем 29%. Числовые значения зависимости величины ассимилированной энергии от массы рачков приведены в табл. 2. Разделив A на усвоемость, нетрудно рассчитать рационы животных. Знание численности и среднюю массу животных, уравнения такого типа можно использовать для расчета величины суточного потока энергии через популяцию рачков.

TEMPERATURE EFFECT ON THE METABOLISM INTENSITY AND GROWTH RATE OF ISOPODA — SPHAEROMA SERRATUM FABR.

Summary

Metabolism intensity and growth rate of Sphaeroma serratum, representative of Isopoda, inhabiting the Black Sea littoral zone, have been studied under the temperature (5, 8, 15 and 23°C) effect. Experiments were conducted on three dimensional groups with the average dry body weight 1.82, 4.59 and 13.18 mg. The energy metabolism rate/body weight equations are presented for four investigated temperatures. The absolute diurnal gain of sphaeromas, mean specific growth rate for the whole dimensional range of isopods, energy expenditures for the energy and plastic metabolism as well as the growth coefficient K_2 are calculated. The maximal value of K_2 at 15°C is marked.