Productivity of Microalgae in Ponds for Oyster Cultivation: Nutrition Peculiarities, Significance of Dissolved Organic Nitrogen

Summary

Consumption of nitrogen compounds dissolved in sea water by microphytobenthos dwelling in oyster-cultivation ponds has been studied. It is established that ammonium ion is preferentially consumed and the immediate use of organic nitrogen compounds by plants is possible.

UDK 591.524.11(262.5)

В. Е. ЗАИКА, Н. П. МАКАРОВА

ПРОДУКЦИЯ ЗООБЕНТОСА ЧЕРНОГО МОРЯ

Проведены расчеты продукции зообентоса Черного моря по нескольким зонам глубин. Средняя продукция (г·м⁻²) по зонам: 25—55 м — 605,5; 55—100 м — 71; 100—125 м — 9; 125—200 м — 2,5. Наиболее продуктивна зона глубин 25—55 м, занятая сообществом иловой мидии. Здесь производится около 2/3 всей годовой продукции зообентоса моря, которая оценена в 15 млн т. Зона 0—25 м дает, видимо, не более 2 млн т. В общей продукции зообентоса доля доминирующего по биомассе вида составляет 60—95% в разных зонах, доля мейобентоса — 0,9—1,4% до глубин 100 м.

Неоднократно производились расчеты суммарной продукции зообентоса Черного моря [1, 3, 9], а также отдельных районов, например шельфа Румынии [10]. Опубликованы оценки суммарной годовой продукции макрофитов [4, 5], микрофитобентоса [9]. Все они, по необходимости приближенные, основаны на ориентировочных расчетах суммарной биомассы В и ее средней годовой оборачиваемости (годового коэффициента P/B), произведение которых и отражает годовую продукцию.

Почему более надежными считались оценки B, но широкое исследование продукционных свойств видовых популяций для представителей разных таксономических и экологических групп позволило выявить получаемые для всего моря B и P/B по степени их приближения к истинным средним значениям. С учетом неравномерности в пространственном распределении отдельных групп и всего бентоса, качественной и количественной изменчивости B и P/B во времени и пространстве, явного ухудшения состояния бентоса под влиянием антропогенных воздействий дальнейшее уточнение продукционных оценок для всего моря нерелевантная задача, во всяком случае при используемых методах определения B и P/B.

В то же время именно структурно-функциональные связи антропогенного характера делают важным контроль за состоянием сообществ бентали по показателям, в частности их биомассы и продукции. Поэтому целесообразно впрямь уточнять соответствующие оценки, не сводя их к получению обобщающих величин для всего моря как наименее надежных. Усреднение биомассы и продукции для отдельных групп, зон, районов сопровождается менее ошибкой. Соответствующие дифференцированные оценки особенно для постоянных, эталонных участков,
разрезов, точек, по-видимому, будут наиболее ценными для контроля за происходящими изменениями.

Влияние загрязнений на состав и биомассу бентоса обнаруживается в прибрежной зоне и на максимальных глубинах его обитания, где наблюдается смещение кверху границы распространения разных групп донных животных. С учетом этого в задачи настоящей работы входили оценка продукции по нескольким глубинным поясам бентали и поиски оптимальных способов дифференцировки зообентоса при продукционных расчетах.

Продукция зообентоса по группам животных и вертикальным зонам моря. При дифференцированных расчетах продукции за основу были взяты многолетние материалы М. И. Киселевой [6, 7] по макро- и мейобентосу с привлечением других данных. Известно, что биомасса ракообразных и червей в Черном море быстро снижается с глубиной, тогда как у моллюсков она максимальна в зоне наибольшего развития нанойной мидии (на глубине около 40 м), после чего также резко убывает (рис. 1). Общее число видов и биомасса макробентоса продолжают падать и глубже 100 м (рис. 2), так что с приближением к зараженной зоне в составе макрообентоса остаются единичные, случайные ювенильные особи, относительно высокая численность мейобентоса поддерживается за счет видов нематод, адаптированных к дефициту кислорода.

Эти закономерности в распределении донной фауны по глубинам с учетом данных о границах поясных сообществ и температурном режиме моря делают целесообразным выделение для продукционных расчетов следующих пяти глубинных зон бентали: 0—25; 25—55; 55—100; 100—125; 125—200 м. Поясным, в частности, что вторая зона (25—55 м) соответствует границам сообщества нанойной мидии, а 125 м — предельная глубина распространения сообщества фазеолинны. Отметим также, что использованные данные о биомассах и продукционные расчеты характеризуют «дострессовый период», так как в 70—80-е годы состояние бентоса стало ухудшаться в разных глубинных зонах.

Для всех выделенных зон, кроме первой (0—25 м), расчеты продукции выполнены дифференцированно по каждому массовому виду макробентоса и каждой группе псевдо- и зумейобентоса, для чего использовали наиболее вероятные величины средней для года суточной удельной продукции С по имеющейся сводке [2]. Эти величины принимали с учетом таксономической принадлежности, средних размеров, вероятной продолжительности жизни.

Рис. 1. Изменение биомассы (% максимальной) с глубиной:
1 — ракообразные; 2 — черви; 3 — моллюски (по [6])
Рис. 2. Изменение с глубиной числа видов (S) и биомассы (B, г/м²) макрообентоса:
1, 2 — B у Кавказа; 3, 4 — B у Крыма (по [7, 8])
<table>
<thead>
<tr>
<th>Продукция</th>
<th>25—55</th>
<th>55—100</th>
<th>100—125</th>
<th>125—200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Средняя, г·м⁻²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Макробентоса</td>
<td>600</td>
<td>70</td>
<td>8</td>
<td>1,8</td>
</tr>
<tr>
<td>Мейобентоса</td>
<td>5,5</td>
<td>1</td>
<td>1</td>
<td>0,7</td>
</tr>
<tr>
<td>Всего</td>
<td>605,5</td>
<td>71</td>
<td>9</td>
<td>2,5</td>
</tr>
<tr>
<td>Общая для зоны, млн т</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Макробентоса</td>
<td>10</td>
<td>2,75</td>
<td>0,023</td>
<td>0,018</td>
</tr>
<tr>
<td>Мейобентоса</td>
<td>0,1</td>
<td>0,53</td>
<td>0,003</td>
<td>0,006</td>
</tr>
<tr>
<td>Всего</td>
<td>10,1</td>
<td>3,28</td>
<td>0,026</td>
<td>0,024</td>
</tr>
</tbody>
</table>

Для некоторых массовых видов макробентоса удельная продукция была рассчитана по имеющимся данным о росте (изменениях размерной структуры популяций). Для всех групп, распространенных выше и ниже холодного промежуточного слоя вод, вводили поправку на температурные условия соответствующих зон с учетом изученных зависимостей [2].

Зообентос в зоне 0—25 м отличается большим разнообразием и пестротой в распределении сообществ, поэтому продукцию вычисляли выборочно для отдельных типов сообществ и только в расчете на 1 м².

Были использованы, в частности, следующие значения C: Mutilus gillani (массовая форма) — 0,0025 сут⁻¹, Gouldia minima — 0,0017, Modiolus phaseolusinus — 0,0012, Plagiocardium simile — 0,0014, Abra alba — 0,004, Amphipura stepanovi — 0,002 сут⁻¹. Усредненная по разным группам мейобентоса удельная продукция составляла 0,06—0,10 для сообществ из зон 0—25; 25—55 м и 0,02—0,03 — для зон, расположенных в области постоянно низких температур.

Оценку продукцию по видам и группам в расчете на 1 м² на вехнем и нижнем краевых и центральном участках понясных сообществ [7], вычисляли общую продукцию зообентоса на 1 м², с учетом грузинной протяженности зоны. Так, в сообществе иловой мидии продукция зообентоса составила 634 г·м⁻²·год⁻¹ в подзоне 25—30 м. 645 — 40—45 м и 124 — на 50 м. Средняя продукция для зоны 25—55 м с учетом характера изменений состава видов и их биомасс по глубинам оценивается в 600 г·м⁻¹·год⁻¹.

С учетом общей площади рассчитаны значения продукции для зон в целом. Эти величины не учитывают малоисследованную, но явную неоднородность бентоса вдоль изобат в масштабах моря, а потому менее надежны, чем результаты расчетов для 1 м² в районах фактического отбора проб. Полученные данные представлены в таблице. При сравнении зон следует учитывать их значительные различия по ширине и общей площади. Наиболее продуктивным является сообщество («биоценоз») иловой мидии, занимающий зону 25—55 м. Особенно резко это выявляется при сравнении продукции на 1 м². В результате эта сравнительно узкая зона дает наибольший вклад в суммарную продукцию зообентоса Черного моря.

Выборочные расчеты по зоне 0—25 м показали, что, за исключением поселений скаловой мидии, ни один тип сообществ не приближается по продуктивности к сообществу иловой мидии. Так, в сообществе гульдингов продукция составляет 27 г·м⁻² на глубине 20 м. Сообщество гульдингов встречается и на глубинах 0—40 м, где его продукция равна 58 г·м⁻²·год⁻¹. С учетом этого зона 0—25 м дает общую годовую продукцию вряд ли более 2 млн т. Отсюда следует, что в зоне иловой мидии (25—55 м) производится 2/3 всей продукции зообентоса Черного моря.
Анализируя вклад разных звеньев бентоса в общую продукцию, прежде всего отметим, что на глубинах до 100 м доля мейобентоса составляет 0,9—1,4%, т. е. на два порядка ниже, чем макробентоса (рис. 3). Лишь с приближением к сероводородной зоне доля мейобентоса возрастает до 40%, что объясняется быстрым снижением биомассы (и продукции) макробентоса.

В составе макробентоса огромный вклад в продукцию принадлежит видам-домinantам (см. рис. 3). Доля доминирующего по биомассе вида в сообществе иловой мидии составляет 95% продукции макробентоса, в лежащих ниже сообществах снижается до 60%. Таким образом, несмотря на относительно высокие величины удельной продукции мелких форм макробентоса и особенно мейобентоса, решающее влияние на вклад в общую продукцию оказывает резкое преобладание доминирующего вида моллюсков по биомассе в каждом типе донных сообществ. Это позволяет заключить, что гетеротрофный микробентос, не учтенный из-за недостатка данных, не может давать существенного вклада в общую продукцию бентали.

Доминирующий по биомассе представитель макробентоса играет ведущую роль и в производстве продукции сообществом. Это может служить дополнительным свидетельством целесообразности выделения «биоценозов», или «петерсеновых сообществ», по доминирующему виду зообентоса.

Приведенные выше результаты показывают, что желательно определить продукцию зообентоса дифференцированно — с выделением доминирующего вида, остального макробентоса и мейобентоса. Соответствующие величины, полученные по нескольким глубинным зонам моря на материалах преимущественно «дострессового периода», уже не соответствуют сегодняшнему уровню продуктивности донных сообществ Черного моря. Они представляются полезными как исходные показатели условной «нормы» для контроля за происходящими крупномасштабными изменениями бентоса.

Разумеется, возможность контроля за изменениями продукции бентоса во времени сильно ограничивается приближенностью оценок удельной продукции, особенно в условиях разнотипных по составу и уровню загрязнений. Большое значение имеют различия в подходах к продукцииным расчетам разных авторов, что показано в следующем разделе. Тем не менее происходящие сдвиги в составе, распределении и биомассе бентоса в разных зонах целесообразно сопоставлять с относительным
вкладом соответствующих видов, сообществ и зон бентали в общую продукцию для суждения о вероятном уровне ущерба для общей гетеротрофной продукции черноморского бентоса.

В. Н. Грее [1] среднее \(P/B = 8.6 \) для моллюсков, полученное преимущественно на мелких, короткоживущих прибрежных гидрологах, справедливо счили неприемлемым для всей малакофауны и произвольно снизил до \(P/B = 2—3 \). Однако двусторонки — доминанты всех основных типов сообществ Черного моря, по нашим специальным расчетам, имеют \(P/B \) ниже 1. Учитывая вклад доминанта в общую продукцию, именно этим объясняется расхождение в оценках общей продукции бентоса.

Обращая внимание на эти особенности расчетов, подчеркнем приближенность всех цитированных оценок, которые не могут претендовать на большее, нежели ориентировочное указание порядка величин. В этом смысле показательно, что весьма различные подходы приводят к различиям, укладывающимся в довольно узкие пределы (15—50 млн т). Наша оценка (15 млн т) может отличаться от истинной продукции в любую сторону. Наставлять на ее большей надежности нет серьезных оснований, важно лишь отметить, что сравнение продукции основных компонентов зообентоса по отдельным зонам бентали проведено нами на основе единого методического подхода, что облегчает сравнение полученных величин.

При последующих продукционных оценках мониторингового характера следует непременно учитывать особенности сопоставляемых величин с точки зрения единообразия методических подходов к их получению. Отличие получаемых величин продукции от опубликованных ранее, скажем, в 2—3 раза может объясняться не действительными изменениями в функционировании сообществ, а различиями в использованных подходах и методах вычислений.

The Black Sea zoobenthos production was calculated in several zones of depths. The average production (g/m) in the zones: 25-35 m — 605.5; 55-100 m — 71; 100-125 m — 9; 125-200 m — 2.5. The zone of 25-55 m is the most productive. It is occupied by the community of mud mussel. About 2/3 of all the annual production of the sea zoobenthos estimated as 15 mill. tons is obtained here. The zone of 0-25 m produces apparently not more than 2 mill. tons. In the total production of zoobenthos the share of the biomass-dominating species is 60-95% in different zones, the share of meiobenthos is 0.9-1.4% to the depth of 100 m.