ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ ЗАГРЯЗНЕНИЯ И САМООЧИЩЕНИЯ МОРЯ

А. Ю. Гончаров

ГИДРОХИМИЧЕСКИЙ РЕЖИМ И ПЕРВИЧНАЯ ПРОДУКЦИЯ ФИТОПЛАНКТОНА В РАЙОНЕ АВАРИЙНОГО ВЫПУСКА СТОЧНЫХ ВОД В ОДЕССКОМ ЗАЛИВЕ

Рассматривается влияние аварийного выпуска сточных вод на гидрохимический режим и первичную продукцию района моря, прилегающего к Одеському побережью южнее мыса Большой Фонтан. Описано пространственное распределение некоторых загрязняющих веществ и ве-
личин ПП. Рассматриваются факторы, влияющие на формирование гидрохимического и гидро-
биологического режимов исследуемого района.

Одним из важнейших факторов загрязнения прибрежной части моря является сброс в морскую воду сточных вод разного происхождения. В городе Одессе функциони-
руют две станции биологической очистки сточных вод, расположенных по краям Одес-
ского залива (СБО “Северная” и СБО “Южная”), перерабатывающие стоки 1,3–миллион-
ного города. Величина сброса СБО “Южная” – 57600 тыс. м³/год, что составляет 50,2 % от объема выпуска сточных вод на всем побережье Одеського залива. При этом со сто-
ком СБО “Южная” в море поступает 95 % взвешенных веществ (8640 т/год), 91 % аммо-
нийного азота (1238,4 т/год), 81 % нефтепродуктов (23 т/год) (от объема выпуска всех сточных вод, поступающих в прибрежную зону залива) [6]. Выпуск воды, прошедшей очистку на СБО “Южная” должен осуществляться за 20–метровой изобатой (рис. 1, станция 10). Однако, в 1996 г. произошел разрыв нитки коллектора в непосредственной близости от берега (300 м) на глубине 8,5 м, где и стал осуществляться аварийный вы-
пуск сточной воды (ст. 3). В связи с этим перед нами была поставлена задача оценить влияние сброса на состояние прилегающего участка моря.

Материал и методы. В рамках исследований, проводимых Одесским филиалом ИнБЮМ НАНУ, 13–14 и 18 сентября 1996 г. на 15 станциях Одеського залива были ото-
браны пробы в поверхностном и придонном горизонтах. Всего отобрано 30 проб. На ка-
ждой станции определялись температура, соленость, pH, содержание растворенного ки-
слорода, мергантазиновая окисляемость, БПК₅, все формы фосфора и азота. Для анализов пробы фильтровались через мембранные фильтры с диаметром пор 0,45 мкм. Опреде-
ления проводили по стандартным методикам [2, 4, 5]. Фосфаты определялись с аскорби-
нокислотой, азот аммонийный — фенолфталеиновым методом, нитриты — с реак-
тивом Грисса, нитраты — методом восстановления в редукторе с омедненным кадмием, органические формы азота и фосфора сжижили в автоклаве с персульфатом калия.

Первичная продукция (ПП) определялась склиновым методом в кислородной модификации. Данные по ПП были любезно предоставлены с.н.с. С. А. Саркисовой.

Результаты и обсуждение. Сточная вода, выходящая из трубы с глубины 8,5 м, ввиду меньшей плотности поднималась на поверхность. Поэтому максимальные концен-
трации веществ (ст. 3) наблюдались в поверхностном горизонте: PO₄ – 0,064 мг-л⁻¹; NH₄ – 0,297 мг-л⁻¹; Nopр. – 3,355 мг-л⁻¹; БПК₅ – 3,36 мгО-л⁻¹ при наименьшей солености (14 %о) и pH (8,22) воды. Невысокой величиной pH, свидетельствующей о низкой скорости продуктовых процессов, соответствовала малая величина первичной продукции в по-
верхностном горизонте ст. 3 – 0,07 мгО-л⁻¹-сут⁻¹ (0,03 мгС-л⁻¹-сут⁻¹). Необходимо отметить, что при удалении от места выпуска концентрация высокеречисленных веществ быстро снижались, достигая фоновых значений на расстоянии 1000 м (рис. 2, 3) от места аварии. Величина первичной продукции при этом возрastaла с 0,09 до 1,87 мгО-л⁻¹-сут⁻¹ (0,03-0,7 мгС-л⁻¹-сут⁻¹) (рис. 2). Особенностью в распределении гидрохимических показа-
телей на этом участке было некоторое увеличение их концентраций на ст. 1 и 8.

Это, возможно, обусловлено гидродинамическими условиями районов вблизи мысов [1], либо, что более вероятно, является следом от сточной воды в условиях мес-

© А.Ю. Гончаров, 2001

Экология моря. 2001. Вып. 58
Рисунок 1. Схема станций в Одеськом заливе
Figure 1. Stations scheme in the Odessa Bay

Рисунок 2. Изменение концентрации (мг·л⁻¹) фосфатов, аммония, нитратного и органического азота, а также величины первичной продукции (мгО₂·л⁻¹·сут⁻¹) в поверхностном горизонте при удалении от точки выпуска (станции вдоль течения – 4, 5, 6; фоновые станции – 2, 7, 9)
Figure 2. Changing of the phosphate, ammonium nitrogen, nitrate- and organic nitrogen concentrations (mg·l⁻¹), and of the primary production value (mgO₂·l⁻¹·day⁻¹) in surface layer at a distance from the discharge point (stations along the stream – 4, 5, 6; background stations – 2, 7, 9)
Рисунок 3. Пространственное распределение аммонийного (мг·л\(^{-1}\)) (а – поверхность, б – дно), азота органического (мг·л\(^{-1}\)) (с – поверхность, д – дно), и первичной продукции фитопланктона (мгО·л\(^{-1}\)·сут\(^{-1}\)) в поверхностном горизонте (е) и потенциальной первичной продукции (мгО·л\(^{-1}\)·сут\(^{-1}\)) в придонном (ф) горизонте 13-14 сентября 1996 г.

Figure 3. Space distribution of ammonium nitrogen (mg·l\(^{-1}\)) (a – surface, b – bottom), organic nitrogen (mg·l\(^{-1}\)) (c – surface, d – bottom) and the primary production (mgO·l\(^{-1}\)·day\(^{-1}\)) in the surface layer (e) and of the potential primary production (mgO·l\(^{-1}\)·day\(^{-1}\)) in the bottom layer (f) in September 1996.

Отмечено увеличение органического азота ко дну до 1,024–1,136 мг·л\(^{-1}\) в узко прибрежной зоне (ст. 5–7 и 15).

На морских станциях, удаленных от района выпуска на 1000 и более метров, наблюдалось возрастание величины первичной продукции до 0,99–1,87 мгО·л\(^{-1}\)·сут\(^{-1}\) (0,37–0,70 мгC·л\(^{-1}\)·сут\(^{-1}\)) (рис. 3, е, ф). По всей видимости, это объясняется гидродинамическим эффектом формирования приграничной зоны максимальной продукции в зоне
смещения сточных и морских вод. Значения биогенов здесь варьировали в следующих пределах: фосфаты 0,003-0,006 мг·л⁻¹, fosфор органический – 0,015-0,040 мг·л⁻¹, азот аммонийный 0,013-0,051 мг·л⁻¹, нитраты – 0,004-0,009 мг·л⁻¹, азот органический – 0,089-1,068 мг·л⁻¹, перманганатная окисляемость – 4,10-5,58 мгО·л⁻¹, БПК₅ – 0,61-1,23 мгО·л⁻¹.

Необходимо отметить, что данный район всегда был обеспечен биогенными веществами, концентрации которых редко снижались до нулевых значений [1, 3]. Это объясняется тем, что изучаемая акватория находится под влиянием не только сброса вод со очистных сооружений, но иногда при определенных ветровых ситуациях проникают трансформированные речные воды из Днепро-Бугского и Днестровского лиманов. Обилие как растворенного, так и взвешенного органического вещества на этом участке моря способствует его накоплению в придонном слое. В свою очередь, это приводит к дефициту кислорода в условиях стратификации водных масс, характерной для данного, осеннего, периода. Здесь на глубине 20 м и более почти ежегодно отмечаются поля гипоксии (O₂ – 0-2,85 мг·л⁻¹) [3]. Гидродинамические условия этого района моря могут способствовать перемещению слоя с низким содержанием кислорода с глубин 20 м и более на прибрежное мелководье.

Рисунок 4. Изменение величины солености (%) и содержания кислорода (мг·л⁻¹) в поверхностном горизонте по ходу сноса
Figure 4. Changing of salinity value (%) and oxygen concentrations (mg·l⁻¹) in the surface layer at a distance from the coast

В период съёмки было установлено, что почти на всех станциях исследованного участка было невысокое содержание кислорода (2,0-7,1 мг·л⁻¹). Такие значения характерны для осенного периода и являются следствием развития деструкционных процессов. На морских станциях (2, 9 и 10) на горизонте 10 м был обнаружен слой с низким содержанием кислорода (2,0-3,0 мг·л⁻¹). На глубине 20 м и более содержание кислорода несколько возрастило (3,2-4,6 мг·л⁻¹) (ст. 10 - 15), что указывает на подход вод из открытой части моря. В период исследования преобладал северо-западный ветер, имеющий сгонное направление. Съёмка, выполненная 18.09.96 г. и направленная от мыса Большой Фонтан в сторону открытого моря (ст. 11 - 15), позволила установить перемещение губинной, более соленой морской воды с низким содержанием кислорода по направлению к берегу (рис. 4)

Таким образом, было установлено, что на фоне природных процессов, характерных для исследованного участка прибрежной зоны моря (м. Большой Фонтан, г. Одесса),
влияние аварийного выпуска сточных вод на состояние водной среды имеет локальный характер. По данным гидрохимических и гидробиологических исследований (по первичной продукции), зона непосредственного влияния сточной воды ограничена радиусом 1000 м.


Одесский филиал Института биологии южных морей НАНУ, г. Одесса

Получено 26.09.2001

A. Yu. GONCHAROV

HYDROCHEMICAL REGIME AND PRIMARY PRODUCTION OF PHYTOPLANKTON IN REGION OF SEWAGE WATERS ACCIDENTAL DISCHARGE IN ODESSA BAY

Summary

The influence of sewage waters discharge on the hydrochemical characteristic and primary production of the region along the Odessa seacoast to the south of cape Bolshoy Fontan is considered. The space distribution of some pollutants and quantities of primary production are described. The processes influencing on the formation of hydrochemical and hydrobiological regimes in the region are investigated.