ДОННЫЕ ЦИАНОБАКТЕРИИ В КОНТИНЕНТАЛЬНЫХ ГИПЕРСОЛЕННЫХ ОЗЕРАХ КРЫМА: ПРЕДВАРИТЕЛЬНОЕ СООБЩЕНИЕ

Впервые изучены цианобактерии континентальным гиперсоленных озерах Крыма. Всего определено 17 видов. Видовая структура очень изменчива. Общая биомасса цианобактерий в этих озерах может превышать 4 г·м².

Гиперсоленные озера Крыма занимают более 15 % его площади. Среди более чем 50 таких озер только несколько, относительно некрупных, имеют континентальное происхождение и никогда не имели связи с морем. Изучены они очень фрагментарно геологам и химиками [3, 4], биология ранее не изучалась. Местное название этих озер "коля" [3]. Практически все они расположены на юго-западной равнине Керченского п-ва. Они не велики по размерам, с небольшими глубинами. Летом большинство из них частично или полностью пересыхает, и на большей площади покрыты минеральной корочкой белого, бело-розового или бего-серого цвета, под которой почти всегда есть очень тонкий слой рапы. Ниже этого слоя расположен ил, в основном черного и черно-серого цвета, со значительным содержанием воды. В минеральном слое бывают зеленоватые или розовые рыхлые прослойки. В третьих годах 20-го столетия проводилось исследование рапы колей Керченского п-ва [4]. По соотношению ионов эти озера резко отличаются от моря и морских озер и относятся к сульфатному типу.

В июле—августе 2001 г. наша экспедиция работала на озерах Ачи, Киркояшское, Марфовское и Шимаханское. Пробы собраны во всех биотопах, включая высошие участки дна и минеральный слой, пробоотборником площадью 1,25 см². Захватывался слой толщиной 4—6 мм. Фиксировали пробы 1%-ным формалином. При их обработке использовали следующий схему [1]: объем пробь доводили до 10 мл и интенсивно взбивали 2—3 мин. Немедленно после взбивания каплю объемом 0,9 мм³ помещали в камеру Горева. Просчитывали под микроскопом весь объем в 3-х повторностях. Размеры клеток измеряли с помощью окуляр-микрометра. Рассчитывали объем клетки, затем и биомассу. Все пересчитывали на м³ дна. Определение до вида по [2]. Всего обработано 25 проб.

Озеро Марфовское. Расположено в северо-восточном углу юго-западной равнины Керченского п-ва у деревни Марфовка. Площадь ~ 2,95 км², длина ~ 2,1 км, ширина 1,2—1,4 км. По его северному и восточным сторонам проходит Парлакский гребень, образуя глинистыми свитами относительно высокие берега. Западный берег низкий и плоский. Питание озера происходит поверхностными и подземными водами, идущими, в основном, из-под Парлакского гребня. Летом уровень воды в озере не превышает 25—30 см. Бывают случаи, когда озеро почти полностью высыхает и рапа остается только во впадинах [4]. В августе 2001 г. наблюдалось просачивание пресных вод на юго-западном берегу, рядом с местом, где отбирали пробы. В период отбора проб 20 % площади озера было занято водным зеркалом, местоположение которого менялось в зависимости от ветра. Большая часть остальной площади озера была покрыта слоем соли. Под слоем воды (рапы) или соли находится толстый слой довольно жидкого черного ила. В предыдущие годы изучен состав рапы и соли в озере [3, 4].

При отборе проб 17.08.2001 соленость (по хлору) у уреза составила 290,75 %, в 15 м от берега — 286,0 %. Температура воды в 17.00 у уреза — 31,5 °C, на удалении 15 м — 30,2 °C, pH соответственно 7,3 и 6,9; eN — от минус 96 Мв до минус 167 Мв и от минус 257 до минус 274 Мв. Вода розово-пурпурного цвета, консистенция жидкого киселя. На определения pH и eN повлияло, вероятно, попадание в воду сероводорода из вымытенных донных осадков.

Озеро Шимаханское. Расположено у деревни Марьея, примерно в 14 км к ЮВ от оз. Марфовского. Площадь около 0,85 км², длина ~ 1,6 км, ширина 0,3+0,6 км. Берега невысокие (до 1 м), плоские. В июле-августе 2001 г. рапы на поверхности не были, на большей площади озеро было покрыто белым, местами розовым, минеральным ланцетом.

© Н. В. Шадрин, О. Г. Найданова, 2002
Экология моря. 2002. Вып. 61
Таблица. Цианобактерии континентальных гиперсольных озер Керченского полуострова (июль - август 2001 г.)
Table. List of bottom Cyanobacteria in continental hypersaline lakes (July - August 2001)

<table>
<thead>
<tr>
<th>Название вида</th>
<th>Встречена в озерах *</th>
<th>Форма**</th>
<th>Частота встречаемости, %</th>
<th>Диапазон биомассы, мг/м²</th>
<th>Диапазон концентраций, млн.д.л./м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myrcyosystis pulveria (Wood) Forti emend. Elenk</td>
<td>М кол.</td>
<td>8</td>
<td>13 - 79</td>
<td>153 + 941</td>
<td></td>
</tr>
<tr>
<td>Gloeocapsa lithophila (Erceg.) Hollerb</td>
<td>М,Ш, А,КК од. кл.</td>
<td>100</td>
<td>26 - 954</td>
<td>41 + 1626</td>
<td></td>
</tr>
<tr>
<td>Cyanothrix gardneri (Fremy) L.Kissel</td>
<td>III нит</td>
<td>4</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscillatoria woronichini Anissim</td>
<td>М,КК,А нит.</td>
<td>52</td>
<td>30 - 176</td>
<td>195 + 1138</td>
<td></td>
</tr>
<tr>
<td>O. antalis Ag.</td>
<td>М,А,Ш нит.</td>
<td>32</td>
<td>125 - 624</td>
<td>32,5 + 163</td>
<td></td>
</tr>
<tr>
<td>O. geminata (Menegh.) Gom</td>
<td>М нит.</td>
<td>32</td>
<td>47 - 1963</td>
<td>16 + 683</td>
<td></td>
</tr>
<tr>
<td>O. rupicola Hansg</td>
<td>М нит.</td>
<td>32</td>
<td>114 - 740</td>
<td>8 + 211</td>
<td></td>
</tr>
<tr>
<td>Phormidium dimorphum Lemm</td>
<td>Ш,КК нит.</td>
<td>28</td>
<td>9 - 505</td>
<td>8 + 423</td>
<td></td>
</tr>
<tr>
<td>Oscillatoria brevis (Kütz.) Gom</td>
<td>М нит.</td>
<td>12</td>
<td>70 - 558</td>
<td>16 + 130</td>
<td></td>
</tr>
<tr>
<td>O. tenuis Ag.</td>
<td>М нит.</td>
<td>12</td>
<td>46 - 290</td>
<td>65 + 415</td>
<td></td>
</tr>
<tr>
<td>Phormidium papuraceum ?</td>
<td>КК нит.</td>
<td>8</td>
<td>8 + 8,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscillatoria borodinii Woronich</td>
<td>М нит.</td>
<td>4</td>
<td>15</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>O. carboniciphila Prat</td>
<td>М нит.</td>
<td>4</td>
<td>129</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>O. limosa Ag.</td>
<td>М нит.</td>
<td>4</td>
<td>823</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Phormidium foveolarum (Vont.) Gom.</td>
<td>КК нит.</td>
<td>4</td>
<td>13</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Spirulina tenuissima Kütz.</td>
<td>М нит.</td>
<td>4</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyngbya limnetica Lemm.</td>
<td>Ш нит.</td>
<td>4</td>
<td>244</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - М - Марфинское; Ш - Шимахансское; А - Ачи; КК - Киркюшское ;
** - кол. - колонии; нит. - нитчатые; од. кл. - одиночные клетки
рём. Озеро полностью высохло, по словам местных жителей, к концу июня. Весной глу- бина озера достигала 60 - 65 см. Пробы отобраны в июле.

Озеро Киркяшское. Расположено в 5 км к ЮЗ от оз. Шимаханского. Площадь 0,7 км², длина 1 км, ширина 0,5+0,7 км. Питание озера происходит поверхностными и подземными водами. Летом 2001 г. довольно сильное просачивание пресной воды про- исходило под ложным, более высоким берегом. Пробы отобраны в июле и августе. В ию- ле рапы на поверхности соли не было. В августе после довольно сильного локального ливня на поверхности соли вода занимала около 15 % общей поверхности, толщина слоя воды 5 - 7 см. В августе в момент отбора проб в воде наблюдалось сильное темно- красное "цветение".

Озеро Ачи. Расположено в центре самой узкой части Керченского п-ва у пос. Владиславовка, в 52 км к западу от оз. Марфовского. Площадь 3,6 км², длина 3,0 км, ши- рина 1,0+1,2 км. В августе примерно 90 % котловины было покрыто водой с сильным "цветением" буро-зелёного цвета. Слой воды достигал 20 - 30 см.

Наряду с отбором проб, 19.08.2001 г. в 17.30 - 18.30 измерены: температура во- ды (27,8°C), рН (7,6), еH (+44 МV), соленость (157,7 %).

В период исследований в озерах не наблюдалось никакой многоклеточной растительности. Животные (хирономиды) отмечены только в озере Ачи. Цианобак- терии найдены во всех биотопах (табл.).

В изученных озерах повсеместно встречалась Gloeocapsa lithophila, существую- щий в форме единичных клеток. 2 вида встречены в 3 озерах, 1 вид — в 2-х. 13 видов встречены только 1 - 2 раза и только в одном из изученных озер. 89 % всех обнаруженно- ных видов относятся к нитчатым формам, 53 % - к роду Oscillatoria. Наибольшее коли- чество видов - в Марфовском озере (12), в Шимаханском и Киркяшском - по 5 и только 3 вида - в оз. Ачи. В первых трех озерах значительные площади были покрыты кор- ками соли, в Ачи выпадение солей не наблюдалось. Возможно, осаждение солей увеличива- ет разнообразие биотопов и, как следствие, растет видовое разнообразие. В целом для объяснения большого видового разнообразия в оз. Марфовском данных не достаточно.

Максимальное число видов в оз. Марфовском отмечено у уреза воды и на 1 - 2 м выше: 8 в одной пробе.

Количественные характеристики всех цианобактерий приведены в таблице. Максимальные биомассы выше 4 мг/м² зафиксированы у уреза воды в оз. Марфовском и в слое соли в оз. Марфовское. Количественное развитие цианобактерий изменялось в довольно широких пределах. Общая биомassa изменялась от 46 до 4172 мг/м².

Таким образом, несмотря на чрезвычайно экстремальные условия существования в сульфатных континентальных гиперсоленных озерах, цианобактерии в них интен- сивно развиваются. Сам феномен этого требует дополнительного изучения.

Работа выполнена при поддержке гранта ІНТАС 97-30776.

Авторы благодарят О. Ю. Еремина за техническую помощь и поддержку.

2. Голлербах М. М., Косинская Е. Е., Полянский В. И. Синезеленые водоросли (Определитель..., Вып. 2). - М.: Сов. Наук, 1953. - 651 с.

Институт биологии южных морей НАН Украины,
г. Севастополь

N. V. Shadrin, O. G. Naidanova

Benthic Cyanobacteria in the Crimean Hypersaline Continental Lakes: Preliminary Communication

Summary

Cyanobacteria from the hypersaline lakes of Crimea have been studied for the first time. 17 species were identified. Species composition very changeable. Total biomass can rich more than 4 g·m⁻².

38