АКАДЕМИЯ НАУК СССР

1961 ТРУДЫ СЕВАСТОПОЛЬСКОЙ БИОЛОГИЧЕСКОЙ СТАНЦИИ ТОМ XIV

Л. А. ДУКА

ПИТАНИЕ ЛИЧИНОК ЧЕРНОМОРСКОЙ ХАМСЫ

Исходя из широко распространенного в литературе положения о том, что выживание личинок рыб определяется наличием доступных кормовых организмов, в настоящей статье специальное внимание обращено на изучение количественных показателей питания и на обеспеченность личинок на соответствующих этапах развития доступным кормом.

Питание личинок черноморской хамсы рассматривается в работах Р. М. Павловской (1955, 1958), где дается качественная и количественная характеристика питания. Для количественной оценки питания автор пользуется индексами наполнения пищеварительного тракта личинок и плотностью кормовых организмов в планктоне. На основании собственных исследований Павловская считает, что накормленность личинок зависит от плотности кормовых организмов и что наличие в планктоне большого количества личинок с пустыми кишечниками есть результат их голода.

Наблюдения над биологией питания личинок черноморской хамсы мы проводили в течение 1957—1958 гг. в западной части Черного моря. Материал собирали икорной сеткой на многосухоточных станциях; пробы брали через короткий промежуток времени.

Летом 1957 г. наблюдения проводили в Евпаторийском районе, в 14 миллиях от берега по траверзу м. Лукулл (с 5 по 12 июля и с 5 по 8 августа). Пробы брали на горизонтах 0, 5, 15 м (горизонтальные ловы) и в слое 25—0 (вертикальные ловы) через каждые четыре часа. Каждые новые сутки сбор проб начинали на час раньше предыдущих суток. Поэтому у нас были материалы по питанию личинок за каждый час суток. Температура воды во время этих наблюдений в слое 0—15 м колебалась от 18,4 до 24,4°. Средняя температура была 21,2°. Плотность личинок под 1 м² поверхности моря составляла 4,7 экз. Из собранных в Евпаторийском районе личинок (1115 экз.) на питание проанализировано 194 экз.

В 1958 г. выполнена двухсуточная станция в Прибосфорском районе (с 31 июля по 1 августа 1958 г.). Пробы брали на горизонтах 0, 5, 15 м (горизонтальные ловы) и в слое 25—0 (вертикальный лов) через каждые полтора — два часа. Температура во время наблюдений в слое 0—15 м колебалась от 21,7 до 24,6°, средняя температура — 23,2°. Плотность личинок в Прибосфорском районе под 1 м² составляла 47,9 экз. Всего за двое суток было собрано 4810 личинок черноморской хамсы. На питание проанализировано 600 личинок. Методика обработки личинок на питание описана ранее (Дука, 1960).

По морфологическим показателям личинки разделяются на три размерные группы (Дехник, 1959).
I ГРУППА — ЛИЧИНКИ ДЛИНОЙ ОТ 2 ДО 3,5 ММ

У этих личинок сохраняется желток, ротовой щелев нет, тело охвачено плавниковой складкой, глаза не пигментированы, на теле пигмент нет. Личинки парят в толще воды. Время от времени совершают броски, сопровождаемые волнообразным движением тела.

II ГРУППА — ЛИЧИНКИ ДЛИНОЙ ОТ 3,6 ДО 6,0 ММ

Эти личинки характеризуются переходом на активное питание. Ротовое отверстие оформлено, анус открыт, кишечник в виде ровной прямой трубки. Тело охвачено плавниковой складкой. Глаза пигментированы. Личинки очень подвижны.

III ГРУППА — ЛИЧИНКИ ДЛИНОЙ ОТ 6,1 ДО 12,0 ММ

В эту группу объединяются личинки от начала формирования непарных плавников до исчезновения плавниковой каймы. Личинки очень активны. В светлое время суток легко ускользают от сетки и в дневных уловах единичны.

Соотношение численности различных размерных групп личинок хамсы в обоих исследованных районах (Прибофорском и Евпаторийском) весьма сходно (рис. 1).

Анализ питания личинок хамсы дается по каждой группе отдельно.

В собранных нами материалах указанные группы личинок присутствуют в разном количестве (табл. 1).

Наибольшую по численности II группа характеризуется переходом на активное питание (см. рис. 1). I группа (предличинки), по данным Дехник, в значительной степени выпадает из уловов, так как предличинки прокалывают через отверстия газа.

Бертикальное распределение личинок хамсы по гирозонам показано в табл. 2. Как видно, все группы личинок приурочены к горизонтам 5—15 м.

Таблица 1

Распределение личинок по группам (на один лов)

<table>
<thead>
<tr>
<th>Группа</th>
<th>Горизонт, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>II</td>
<td>27</td>
</tr>
<tr>
<td>III</td>
<td>8</td>
</tr>
</tbody>
</table>

Рис. 1. Количественное соотношение личинок хамсы по группам

1 — Евпаторийский район; 2 — Прибофорский район
Общее количество личинок по всем горизонтали в дневных уловах в два —
два с половиной раза меньше, чем в ночных уловах (табл. 2). С одной

Таблица 2
Распределение личинок хамсы по горизонтам
(на одинлов) в Прибосфорском районе

<table>
<thead>
<tr>
<th>Горизонт, м</th>
<th>Число личинок на один улов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>днем</td>
</tr>
<tr>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>57</td>
</tr>
<tr>
<td>15</td>
<td>57</td>
</tr>
<tr>
<td>25—0</td>
<td>8</td>
</tr>
</tbody>
</table>

стороны, это связано, по-видимому, с тем, что в светлое время суток личинки
лучше ориентируются и активно ускользают от орудий лова (Маятский,
1940; Пчелина, 1940; Дехник, 1960; Павловская, 1955, 1958 и др.), а с дру-
гой стороны, вероятно, — тяготение личинок к условиям меньшей осве-
щенности, как это установлено С. Г. Крыжановским (1956) для личинок
сахалинской сельди. Так же, как и личинки черноморской хамсы, личинки
сахалинской сельди в течение суток не мигрируют и обитают на горизонтах
5—15 м. В период яркого солнечного освещения личинки сахалинской сель-
ди опускаются на глубину 20 м, в зону ослабленного освещения, и подни-
маются в верхние горизонты только с наступлением сумерек.

Активно питающиеся личинки сахалинской сельди, по данным И. С. По-
кровской (1957), держатся в подавляющем большинстве случаев на глу-
бине 9—25 м. Наибольшее их количество ловят на глубине 9 м. На поверх-
ности встречаются личинки только с желточным мешком.

По данным Боковой (1954), наибольшие скопления личинок салаки на-
ближаются преимущественно на глубине 9 м.

КАЧЕСТВЕННАЯ И КОЛИЧЕСТВЕННАЯ
ХАРАКТЕРИСТИКА ПИТАНИЯ

У личинок черноморской хамсы в пищевом комке встречаются шесть ви-
дов фитопланктона (Coscinodiscus sp., Peridinium sp., Prorocentrum sp.,
Exuviaella compressa, E. cordata, споры грибов) и восемь видов зоопланк-
тона (Acartia sp., nauplii Copepoda, metanauplii Copepoda, Oithona minuta,
Paracalanus parvus, личинки Gastropoda, личинки Lamellibranchiate, яй-
ца Copepoda).

Для количественной характеристики питания личинок хамсы мы исходим
из их средних весов, методика определения которых описана ранее (Дука,
1960). При определении средних весов личинок вес содержимого кишечника
может значительно искать результаты. Поэтому в настоящей работе оп-
ределение средних весов личинок проводили только на экземплярах, вылов-
ленных ночью, когда личинки обычно не питаются.

В результате проведенных групповых взвешиваний личинок хамсы уда-
лось выделить девять весовых групп; колебания размеров в пределах одной
группы не превышали 0,5—1,1 мм (табл. 3).

Интенсивность питания личинок черноморской хамсы устанавливали
как по индексам наполнения кишечников, так и по суточным рационам.
В настоящем разделе рассматриваются индексы наполнения, данные по
рациям приведены в специальном разделе.
Таблица 3

<table>
<thead>
<tr>
<th>Длина личинок, мм</th>
<th>Средний вес, мг</th>
<th>Число групповых извещений</th>
</tr>
</thead>
<tbody>
<tr>
<td>колебания</td>
<td>среднее</td>
<td></td>
</tr>
<tr>
<td>2,7—3,2</td>
<td>2,95</td>
<td>0,048</td>
</tr>
<tr>
<td>3,6—4,4</td>
<td>4,00</td>
<td>0,0903</td>
</tr>
<tr>
<td>4,5—5,3</td>
<td>4,90</td>
<td>0,152</td>
</tr>
<tr>
<td>5,4—5,9</td>
<td>5,65</td>
<td>0,278</td>
</tr>
<tr>
<td>6,0—7,1</td>
<td>6,55</td>
<td>0,387</td>
</tr>
<tr>
<td>7,2—7,7</td>
<td>7,45</td>
<td>0,629</td>
</tr>
<tr>
<td>7,8—8,9</td>
<td>8,35</td>
<td>1,139</td>
</tr>
<tr>
<td>9,0—9,2</td>
<td>9,10</td>
<td>1,491</td>
</tr>
<tr>
<td>9,3—9,8</td>
<td>9,55</td>
<td>3,19</td>
</tr>
</tbody>
</table>

В табл. 4 показано изменение индексов наполнения кишечников с увеличением размеров личинок. Средние индексы вычисляли для личинок, кишечники которых содержали пищу. Личинки с пустыми кишечниками трагами в дневное время при расчете средних индексов не принимали во внимание.

Таблица 4

<table>
<thead>
<tr>
<th>Длина личинок, мм</th>
<th>Евпаторийский район</th>
<th>Прибофоский район</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,6—3,9</td>
<td>54,88</td>
<td>105,75</td>
</tr>
<tr>
<td>4,0—4,9</td>
<td>96,11</td>
<td>87,43</td>
</tr>
<tr>
<td>5,0—5,9</td>
<td>84,62</td>
<td>44,12</td>
</tr>
<tr>
<td>6,0—6,9</td>
<td>58,37</td>
<td>42,99</td>
</tr>
<tr>
<td>7,0—7,9</td>
<td>73,50</td>
<td>29,09</td>
</tr>
</tbody>
</table>

Наиболее высокие индексы отмечены у личинок длиной 3,6—3,9 мм, т.е. у тех личинок, которые только перешли к активному питанию. С увеличением размеров индексы уменьшаются.

Аналогичное изменение индексов с возрастом у личинок черноморской хамсы наблюдала Павловская (1955).

Индексы наполнения кишечников для личинок по Евпаторийскому району выше, чем по Прибофоскому району, по-видимому, в связи с тем, что в их питании наряду с наулиусами Copepoda большой процент приходится на долю относительно крупного организма Oithona minuta.

Рассмотрим качественные и количественные показатели питания личинок черноморской хамсы по группам.

Личинки черноморской хамсы длиной 2,0—3,5 мм питаются преимущественно за счет желточного мешка. В отдельных случаях у личинок длиной 3,2—3,5 мм в кишечниках встречаются яйца и молодые Nauplii Copepoda.

Личинки II группы длиной 3,6—6,0 мм и весом от 0,0903 до 0,278 мг характеризуются переходом на активное питание.

Количество личинок II группы с пустыми кишечниками по Евпаторий-
скому району составляло 59,03% от общего числа личинок, собранных в светлое время суток и просмотренных на питании: по Прибосфорскому району — 45,03%. Первоначальную пищу у личинок II группы составляли мелкие, малоподвижные наутилусы Copepoda длиной 0,07—0,12 мм, яйца Oithona minuta и Oithona similis, а также копеподы Oithona minuta. Из фитопланктона изредка встречаются Exuviaella cordata, E. compressa Peridinium «sp». Первое место по частоте встречаемости как в Евпаторийском, так и в Прибосфорском районе занимают наутилусы Copepoda — от 67,65 до 82,16% (табл. 5). Яйца Copepoda в обоих районах по частоте встречаемости составляют от 5,89 до 18,92%, а фитопланктон — от 0,54 до 8,82%. По весовому значению в Прибосфорском районе в пище личинок хамсы первое место занимают наутилусы Copepoda — 75—72%, в Евпаторийском районе Oithona minuta — 80,14%. Фитопланктон по весу в обоих районах составляет меньше 1% (табл. 5). Таким образом, по нашим данным, основную роль в питании личинок черноморской хамсы в момент их перехода на активное питание принадлежит зоопланктону. По наблюдениям Павловской, у личинок черноморской хамсы, собранных в районе Батуми и Карадага, первое место по частоте встречаемости занимает фитопланктон.

В работе Т. Ф. Дементьевой (1958) есть указание о том, что фитопланктон в питании личинок азовской хамсы представлен незначительно.

В кишечниках личинок сахалинской сельди фитопланктон изредка встречается в момент смены одного питания. На основании этого Покровская (1957) считает, что фитопланктон является первоначальной пищей личинок при переходе на активное питание. Однако Крыжановский (1956) отмечает, что водоросли не могут представлять жизненно необходимым корм для личинок сахалинской сельди.

В пище личинок волжской сельди, по данным А. П. Сушкиной (1940), фитопланктон отсутствовал. Сушкина в кишечниках личинок волжской сельди обнаружила водоросли вместе с песчинками и другими непереваренными остатками. «Бывали случаи, — отмечает Сушкина, — когда у самого анального отверстия попадались клетки без признаков переваривания».

В питании личинок тольки фитопланктонные организмы также встречаются очень редко (Логвинович и Фельдман, 1951).

В III группу объединяются личинки длиной 6,1—12,0 мм. Количественная характеристика питания дается только для личинок длиной 6,1—8,9 мм, так как личинки больших размеров в дневных уловах встречаются очень редко (табл. 5). На питание обработано 70 личинок, собранных в светлое время суток. Вес личинок, проанализированных на питание, изменяется от 0,397 до 1,139 мг. Процент пустых кишечников личинок III группы в Прибосфорском районе равен 57, а в Евпаторийском районе — 61. Основную роль в питании личинок III группы также, как и у личинок II группы, играет животная пища. Личинки длиной 6,1—8,9 мм заглатывают более крупные наутилусы размерами от 0,12 до 0,19 мм. В пищевом комке появляются копеподы, которые у личинок II группы не встречены. По частоте встречаемости Nauplii Copepoda составляют от 68,4 до 72,10%, Oithona minuta — от 37,21 до 57,89% (табл. 5). В пищевом комке III группы личинок первое место по весу занимают не Nauplii Copepoda, как у личинок II группы, а Oithona minuta (от 45,67 до 68,68%) и копеподы Articaria clausi (до 26,96%). Фитопланктон составляет по частоте встречаемости от 4 до 15%, а по весу меньше 0,1%.

Интенсивность питания личинок III группы ниже, чем у личинок II группы. Средний индекс наполнения колеблется от 36,04 до 48,80.
Количественные показатели питания личинок хамсы (в %)

<table>
<thead>
<tr>
<th>Компоненты пищи</th>
<th>Ёлвато́рский район</th>
<th>Прибо́сфорский район</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Частота встречаемости</td>
<td>Весовое значение</td>
</tr>
<tr>
<td>Exuviaeella cordata</td>
<td>8,82</td>
<td>0,06</td>
</tr>
<tr>
<td>Prorocentrum micans</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Peridinium sp.</td>
<td>2,94</td>
<td>0,07</td>
</tr>
<tr>
<td>Gonioaulax spinifera</td>
<td>2,94</td>
<td>0,01</td>
</tr>
<tr>
<td>Coscinodiscus sp.</td>
<td>2,94</td>
<td>0,04</td>
</tr>
<tr>
<td>Copepoda яйца</td>
<td>5,89</td>
<td>0,30</td>
</tr>
<tr>
<td>Copepoda наулиусы</td>
<td>67,65</td>
<td>17,87</td>
</tr>
<tr>
<td>Copepoda метанаулиусы</td>
<td>5,89</td>
<td>1,51</td>
</tr>
<tr>
<td>Oithona minuta</td>
<td>41,18</td>
<td>80,14</td>
</tr>
<tr>
<td>Lamellibranchiate личинки</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Exuviaeella cordata</td>
<td>15,79</td>
<td>0,01</td>
</tr>
<tr>
<td>Coscinodiscus sp.</td>
<td>5,26</td>
<td>0,06</td>
</tr>
<tr>
<td>Copepoda яйца</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Copepoda наулиусы</td>
<td>68,42</td>
<td>22,80</td>
</tr>
<tr>
<td>Copepoda метанаулиусы</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Oithona minuta</td>
<td>37,21</td>
<td>68,68</td>
</tr>
<tr>
<td>Acartia clausi</td>
<td>5,26</td>
<td>26,96</td>
</tr>
<tr>
<td>Gastropoda личинки</td>
<td>5,26</td>
<td>4,50</td>
</tr>
</tbody>
</table>
СУТОЧНЫЙ РИТМ ПИТАНИЯ

Данных по суточному ритму питания личинок черноморской хамсы в литературе нет.

А. П. Сушкина (1940) глубоко и всесторонне изучала ритм питания личинок волжской сельди. По ее данным, личинки сельды имеют два максимума интенсивности питания — утром и вечером, понижение интенсивности — днем и полдень прекращение питания — ночью.

Д. Н. Логвинович и В. Ф. Фельдман (1951) установили суточный ритм питания личинок азовской тюлек. Питание личинок тюлек происходит с разной интенсивностью, наибольшая интенсивность питания наблюдается в светлое время суток. Первый максимум приходится на утренние часы (6—8 час.), второй максимум питания наблюдается в дневные часы (11—14 час.). В вечернее и ночное время суток интенсивность питания значительно снижается.

Личинки сахалинской сельды, по данным И. С. Покровской (1957), имеют один дневной максимум питания (16 час.).

В результате наблюдений, проведенных по черноморской хамсе, мы располагаем материалами по питанию личинок за каждый час суток. Изменение суточной интенсивности питания личинок хамсы (по индексам наполнения кишечников) показано на рис. 2. Приведенные данные показывают, что личинки черноморской хамсы питаются только в светлое время суток (с 6 до 21 часа), ночью личинки не питаются. Наблюдаются два максимума в питании, как это отмечено для личинок волжской сельди.

Первый максимум приходится на утро (6—9 час.), затем интенсивность питания снижается и снова возрастает к 15 час., достигая второго максимума к 19 час.

СКОРОСТЬ ПЕРЕВАРИВАНИЯ

В пищеварительном аппарате личинок черноморской хамсы различаются следующие отделы: узкий, сравнительно длинный пищевод (рис. 3, а), средняя кишка, разделяющаяся на короткий передний секретирующий отдел, задний, более широкий и длинный всасывающий отдел и сравнительно короткую заднюю кишку.

Скорость переваривания обычно определяется в экспериментальных условиях.

Нами была сделана попытка установить скорость переваривания пищи для личинок рыб на фиксированном материале. Предполагаемый метод может быть применен к личинкам, которые захватывают пищу через определенные промежутки времени и имеют прямые просвечивающиеся кишечники. Метод основан на знании суточного ритма и состоит в том, что прослеживается местоположение пищевого комка в кишечных трактах от момента захвата пищи до дефекации. Результаты наблюдений, приведенные ниже,
показывают последовательность продвижения пищевого комка по кишечному тракту для личинок черноморской хамсы. Приводятся фотографии кишечников (рис. 5, 6, 7, 8, 9, 10, 11, 12) при увеличении 8×10 микроскопа МБ И-1.

![Рис. 3. Кишечный тракт личинки в ночное время](image)

а — пищевод; б — средняя кишка; в — всасывающий отдел; г — задняя кишка

22—5 час. Все 100% личинок с пустыми кишечниками. Кишечники прозрачные, со спавшимися стенками (рис. 3).

5 час. 25 мин.—6 час. 70% личинок в секретирующем отделе кишечника содержат пищевые организмы (Nauplii Copepoda, Oithona minuta и копеподы Acartia clausi), видовую принадлежность которых легко установить вследствие прозрачности стенок кишечников. У личинок длиной 3—4 мм в секретирующем отделе по 2—3 наулиуса размером 0,07—0,09 мм. Nauplii, схваченные в первую очередь, частично переварены, размеры их увеличены в результате набухания (рис. 4). У личинок длиной 6—7 мм в кишечниках по одной взрослой особи (рис. 5) (копеподы Acartia clausi, Oithona minuta).

6 час. 32 мин. Все 100% личинок с полными кишечниками. Пищевые комки из секретирующего отдела продвигнулись во всасывающий отдел (рис. 6, 7, 8). Крупные организмы в кишечниках личинок длиной 6—7 мм сохранили свою структуру и хитин, но стали более прозрачными. Часть мелких наулиусов, схваченных в первую очередь, переварились до аморфной массы, состоящей из остатков хитина и отдельных, сильно переваренных частей тела (рис. 7). При таком состоянии пищевого комка очень трудно установить видовую принадлежность съеденных организмов. Аморфная масса сосредоточена во всасывающем отделе кишечника.

6 час. 57 мин.—7 час. 20 мин. У личинок, захвачивших мелких наулиусов, пищевые комки в виде аморфной массы, равномерно распределены по всему всасывающему отделу. Кишечники вздуты. Участки кишечника, где находится аморфная масса, имеют темный цвет (рис. 9). У личинок длиной 6—7 мм, захвативших по одному крупному организмну Oithona minuta или Acartia clausi, пищевые комки располагаются в конце всасывающего отдела и сами организмы не перевариваются до аморфной массы, как мелкие наулиусы (рис. 10).

8 час. 25 мин.—8 час. 30 мин. Аморфная масса в кишечниках уплотнилась и продвинулась в заднюю кишуку. 60% личинок вновь начали захватывать корм. Во всасывающем отделе появились свежезаглоченные кормовые организмы (рис. 11 и 12).

При вскрытии кишечников с аморфной массой, образованной в результате переваривания мелких наулиусов с нежным хитином, на первый взгляд может показаться, что кишечники пусты, так как форменные элементы пищи отсутствуют. Особенно трудно заметить аморфную массу, если она уже частично выделена в виде фекалиев и остатки ее перешли в заднюю часть кишки (рис. 11 и 12). В действительности аморфное состояние
Рис. 4. Кишечный тракт личинки, начавшей питаться мелкими организмами после ночного перерыва в питании

Рис. 5. Кишечный тракт личинки, начавшей питаться крупными организмами после ночного перерыва в питании (5 час. 25 мин.—6 час.)

Рис. 6. Пищевой комок, состоящий из крупных Copepoda, в кишечнике личинок продвинулся из секретирующего отдела во всасывающий (6 час. 32 мин.)

Рис. 7. Пищевой комок в кишечнике личинки, состоящий из мелких науплиусов, при движении из секретирующего отдела во всасывающий (6 час. 32 мин.)

Рис. 8. Яйца Copepoda в кишечнике личинки, не потерявшие форму, но в конце всасывающего отдела ставшие более прозрачными (6 час. 32 мин.)
Рис. 9. Кишечник личинки, содержащий аморфную массу (6 час. 57 мин.—7 час. 20 мин.)

Рис. 10. Крупные Coleopoda в кишечнике личинки, не переваренные до аморфной массы (6 час. 57 мин.—7 час. 20 мин.)

Рис. 11. Аморфная масса в кишечнике личинки, уплотнившаяся и продвигнувшаяся в заднюю кишку (8 час. 25 мин.—8 час. 30 мин.)

Рис. 12. Процесс дефекации аморфной массы не окончен полностью. Личинка вновь стала захватывать пищу

пищевого комка является результатом окончания процесса переваривания. Продвижение пищи по кишечнику от момента захвата до образования аморфной массы при температуре 23° происходит примерно в течение 2—2,5 час.

Интересно отметить, что для личинок волжской сельди (при совпадающем качественном составе пищи) скорость переваривания пищевого комка (в экспериментальных условиях) при средней температуре 23° составляет 2 часа 32 мин.

У личинок хамсы, захвативших крупные организмы, которые не перевариваются до аморфной массы, новый захват пищи начинается только после полной дефекации проглоченного организма. Такие личинки с пустыми кишечниками в период активного питания встречаются в часы, когда процесс переваривания предыдущей порции окончен, а новый захват пищи не наступил.

Число личинок с пустыми кишечниками в светлое время суток и с кишечниками, содержащими аморфную массу, относительно стабильно и составляет примерно 50—60% от всех личинок, собранных в светлое время суток. У личинок Gobiidae, Blenniidae, Callionymus festivus, Lepadogaster sp., по нашим наблюдениям, пищевые организмы никогда не перевариваются до аморфной массы. У личинок Lepadogaster sp., Callionymus festivus, Gobiidae процент пустых кишечников в светлое время суток очень мал. У личинок присосок процент пустых кишечников равен 12,2; у личинок
бычков — 9, а личинки морских мышек с пустыми кишечниками в светлое время суток не встречаются.

Многие авторы отмечают очень большой процент встречаемости личинок сельдевых с пустыми кишечниками. По данным Лебур (Lebour, 1918—1920), 70% от общего количества исследованных личинок сельди были с пустыми кишечниками, а у личинок шпрота — 90%. Баттачарья (Bhattacharya, 1957) отмечает, что в Северном море встречается до 55% личинок сельди с пустыми кишечниками.

Сушкина (1940) отмечает большой процент личинок волжской сельди с пустыми кишечниками. В работе есть указания на образование аморфной массы: «Часто в пустых кишечниках наим наблюдалась мелкое аморфные частицы и воздуха участков кишечки, как бы свидетельствующие о недавнем пребывании пищи». Автор допускает возможность отрыгивания пищи личинками сельди.

По данным Логвинович и Фельдман (1951), до 90% личинок тюлень встречаются с пустыми кишечниками. Авторы также предполагают, что личинки тюльки на ранних этапах развития свойственно отрыгивание пищи.

Логвинович и Фельдман отмечают, что пища личинок тюлень иногда встречалась в сильно перервавенном виде, состав ее при этом определялся по отдельным сохранившимся частям кормовых организмов.

Можно предположить, что у личинок тюлень при захвате мелких организмов пища также перерабатывается до аморфной массы.

По данным Боковой (1955), число пустых кишечников у личинок азовской хамсы равно 81%, а у личинок Clupea harengus — 87%. Она пишет: «...большое количество личинок с пустыми кишечниками на самых ранних этапах развития говорит о том, что молодь при переходе на активное питание не сразу начинает питаться, а возможно и не всегда находит в достаточном количестве свойственную ей пищу».

Р. М. Павловская (1955) связывает большой процент личинок черноморской хамсы с пустыми кишечниками, с количеством кормовых организмов в море. Автор считает, что плотность организмов (10—14 тыс. экз./м²) является оптимальной для выживания личинок на первом этапе активного питания (личинки размером 4—10 мм), когда чувствительность к недостатку корма наиболее выражена.

При вычислении процента пустых кишечников Сушкина (1940), Логвинович и Фельдман (1951), Бокова (1955), Павловская (1957) и др. исходят из общего числа личинок, не учитывая суточного ритма питания. На основании большого процента личинок с пустыми кишечниками авторы приходят к выводу о голодании личинок в результате неблагоприятных кормовых условий.

Проследленный ритм потребления пищи и скорость переваривания ее у личинок черноморской хамсы позволяют прийти к заключению, что личинки с пустыми кишечниками характеризуют не плохие кормовые условия, а являются отражением суточного ритма питания.

Известно, что длина желудочно-кишечного канала у рыб зависит от характера пищи (Пучков, 1941). Рыбы, питающиеся наряду с животной также и растительной пищей, обычно имеют длинный кишечник.

Растительноядные рыбы имеют наибольшую относительную длину кишечника.

Мы исследовали длину кишечника у личинок хамсы, бычков и присосок, имеющего форму прямой трубы. Оказалось, что относительная величина кишечника личинок хамсы больше (за счет всасывательного отдела), чем у личинок того же размера бычков и присосок (табл. 6).
Таблица 6
Изменение величины кишечника с возрастом (в % к длине тела) у некоторых личинок рыб

<table>
<thead>
<tr>
<th>Вид личинок</th>
<th>Длина, мм</th>
<th></th>
<th></th>
<th></th>
<th>Средняя длина кишечника, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Хамса</td>
<td>58,22</td>
<td>59,15</td>
<td>59,95</td>
<td>61,18</td>
<td>61,80</td>
</tr>
<tr>
<td>Присоски</td>
<td>39,50</td>
<td>39,70</td>
<td>40,53</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Бычки</td>
<td>23,40</td>
<td>24,94</td>
<td>25,00</td>
<td>25,89</td>
<td>—</td>
</tr>
</tbody>
</table>

С возрастом относительная длина кишечника увеличивается. У личинок черноморской хамсы длиной 3 мм длина кишечника составляет 58,22% от длины тела, у личинок длиной 8 мм — 61,84%. У личинок присосок кишечный тракт короче, чем у личинок хамсы. При длине 4 мм кишечный тракт составляет 39,50, а при длине 6 мм — 40,53%. У личинок бычков кишечный тракт еще короче: при длине 3 мм — 23,4% от длины тела, а при размере 6 мм — 25,89%.

Длинный кишечник обладает большой всасывающей и переваривающей поверхностью, способствующей лучшей утилизации пищи. Было показано, что мелкие нежные организмы в кишечнике хамсы перевариваются до аморфной массы, тогда как у личинок присосок и бычков пища никогда не переваривается до аморфного состояния.

РАЦИОНЫ И СУТОЧНОЕ ПОТРЕБЛЕНИЕ ПИЩИ

Наиболее правильное представление о количестве использованной пищи дает суточный рацион рыбы, однако в отношении большинства рыб суточные рационы неизвестны.

Для личинок рыб данных по суточному потреблению почти нет, за исключением нескольких работ (Сушкин, 1940; Логгинович, 1955; Schaeferclaus, 1933, цит. по Сушкиной, 1940; Дука, 1958). В этих работах величину суточного потребления определяли в экспериментальных условиях или в условиях, близких к естественным.

Р. П. Матвеева (1957), используя данные Сушкиной по скорости переваривания волжской сельды, рассчитала приблизительные суточные рационы для молоди сельдевых в Северном Каспии в естественных условиях. Суточное потребление пищи молоди каспийского пузанка и волжской сельды составляет 6,0—6,5% от веса тела, рационы кильки значительно выше — 11%.

Данные по суточному рациону личинок рыб в естественных условиях обитания нам не известны. Нами были сделаны расчеты суточного потребления пищи для личинок черноморской хамсы, исходя из скорости переваривания пищи, времени, в течение которого происходит захват пищи и величины предельного и среднего наполнения кишечников.

Обычно при вычислении рационы пользуются величинами предельного или среднего наполнения кишечников, исходя из общего количества личинок с наполненными кишечниками. При этом не учитывается скорость переваривания пищи и процесс дефекации отдельных порций пищи. Рационы, рассчитанные таким методом, не будут соответствовать истинному значению.
При вычислении среднего наполнения кишечников у личинок хамсы принималось во внимание такое наполнение, когда можно было легко установить видовую принадлежность кормовых организмов.

![Graph](image)

Рис. 13. Соотношение величин общего индекса наполнения кишечного тракта и суточного рациона с возрастом личинок хамсы.

Данные по суточным рационам личинок хамсы приведены в табл. 7. Рационы личинок хамсы так же, как и индексы наполнения, с ростом личинок убывают.

Таблица 7

<table>
<thead>
<tr>
<th>Район</th>
<th>Длина личинок, мм</th>
<th>Рацион при предельном наполнении, %</th>
<th>Суточное потребление пищи при предельном наполнении, %<sub>к</sub>
к весу тела</th>
<th>Рацион при среднем наполнении кишечника, %</th>
<th>Суточное потребление пищи при среднем наполнении, %<sub>к</sub>
к весу тела</th>
</tr>
</thead>
<tbody>
<tr>
<td>Евпаторийский</td>
<td>3,6—3,9</td>
<td>0,032</td>
<td>44,00</td>
<td>0,011</td>
<td>11,96</td>
</tr>
<tr>
<td></td>
<td>4,0—4,9</td>
<td>0,038</td>
<td>22,24</td>
<td>0,012</td>
<td>7,43</td>
</tr>
<tr>
<td></td>
<td>5,0—5,9</td>
<td>0,051</td>
<td>18,42</td>
<td>0,015</td>
<td>5,5</td>
</tr>
<tr>
<td></td>
<td>6,0—6,9</td>
<td>0,052</td>
<td>13,44</td>
<td>0,022</td>
<td>5,8</td>
</tr>
<tr>
<td>Прибоосфорский</td>
<td>3,6—3,9</td>
<td>0,018</td>
<td>20,15</td>
<td>0,007</td>
<td>7,75</td>
</tr>
<tr>
<td></td>
<td>4,0—4,9</td>
<td>0,025</td>
<td>16,58</td>
<td>0,013</td>
<td>8,55</td>
</tr>
<tr>
<td></td>
<td>5,0—5,9</td>
<td>0,030</td>
<td>10,86</td>
<td>0,018</td>
<td>6,47</td>
</tr>
<tr>
<td></td>
<td>6,0—6,9</td>
<td>0,037</td>
<td>9,58</td>
<td>0,020</td>
<td>5,0</td>
</tr>
</tbody>
</table>

У личинок хамсы длиной 3,6—3,9 мм рацион по двум районам колеблются от 8 до 12%. Величины рационов как в Евпаторийском, так и в Прибоосфорском районах одного порядка несмотря на то, что численность кормовых организмов в этих районах различна. Так, в Евпаторийском районе под 1 м² поверхности моря на одну личинку хамсы приходится 14 018 экз. основных кормовых форм, а в Прибоосфорском — 10 867 экз., т. е. почти в 1,5 раза меньше.\(^1\)

Большой интерес представляет идентичный характер кривых изменений индексов наполнения и изменений суточных рационов (в % к весу тела) по

\(^1\) Данные по зоопланктона любезно предоставлены Т. С. Петина и Э. Я. Балдиной
дву районам. Такое совпадение, полученное для личинок определенной популяции, в известной степени свидетельствует о том, что индексы наполнения рассчитаны на основании многосусточных наблюдений при анализе суточного ритма питания и приемлемы для характеристики изменения интенсивности питания (рис. 13).

Полученные результаты по питанию личинок черноморской хамсы наряду с количественными данными по распределению икринок и личинок позволили Т. В. Дехник (1959) прийти к выводу, что для двух изученных районов выживание личинок не было связано с кормовыми условиями. При меньшей обеспеченности кормом в Прибосфорском районе (из расчета на одну личинку) показатели выживания в личиночный период оказались более высокими, чем в Евпаторийском районе, где на одну личинку приходится в полтора раза больше основных кормовых организмов, чем в Евпаторийском.

ВЫВОДЫ

1. Личинки черноморской хамсы как днем, так и ночью обитают преимущественно в слое 5—15 м.

2. Основными объектами питания личинок хамсы является зоопланктон (науплиусы и метанауплиусы Copepoda, Oithona minuta, копеподитные стадии Acartia clausi и яйца Copepoda).

3. В суточном ходе питания личинок хамсы выявлено два периода более интенсивного питания: утренний (6—9 час.) и вечерний (15—19 час.). Ночью личинки в естественных условиях не питаются.

4. Скорость переваривания пищи личинками хамсы при температуре 21,2—23,2° в естественных условиях обитания составляет два — два с половиной часа.

5. Большиной процент личинок сельдевых с пустым кишечным трактом определяет неплохие кормовые условия, как принято считать, а является отражением суточного ритма питания.

6. Суточные рационы личинок хамсы размерами от 3,6 до 5,9 мм колеблются в море при температуре 21,2—23,2° от 8 до 12% от веса тела, а у личинок длиной 6,0—6,9 мм — от 5,0 до 5,8%. Рационы личинок хамсы так же, как индексы наполнения кишечников, с возрастом падают.

ЛИТЕРАТУРА

Бокова Е. Н. 1954. Питание молоди промысловых рыб Балтийского моря.— Труды ВНИРО, т. XXVI.

Бокова Е. Н. 1955. Методика изучения питания рыб в естественных условиях на ранних этапах развития.— Труды Совещ. по методике изучения кормовой базы и питания рыб. Изд-во АН СССР.

Дементьева Т. Ф. 1958. Методика изучения влияния естественных факторов на численность азовской хамсы.— Труды ВНИРО, т. XXXIV.

Дехник Т. В. 1960. Показатели экламиации в эмбриональный и личиночный периоды развития черноморской хамсы.— Труды Севаст. биол. станции, т. XIII.

Дуда Л. А. 1960. Питание молоди Gobiidae.— Труды Севаст. биол. станции, т. XII.

Крыжановский С. Г. 1956. Материалы по развитию сельдевых рыб.— Труды ИМЖ, вып. 17.

Логвинович Д. Н. и Фельдман В. А. 1951. О питании личинок азовской тюлени.— Труды АзЧерНИРО, вып. 15.

Логвинович Д. Н. 1955. Материалы по биологии личинок и мальков морского судака и леща и годовиков перкарпин.— Труды АзЧерНИРО, вып. 16.

Малятский С. М. 1940. Нерест хамсы (Engraulis encrasicholus L.) в Черном море.— Труды Новорос. биол. станции, т. II, вып. 3.

Матвеева Р. П. 1957. Питание молоди сельдевых в Северном Каспии.— Труды Всес. гидробиол. об-ва, т. VIII.
Павловская Р. М. 1955. Выживание черноморской хамсы на ранних этапах развития. — Труды АзЧерНИРО, вып. 16.
Павловская Р. М. 1958. О выживаемости личинок хамсы в северо-западной части и в некоторых других районах Черного моря в 1954—1955 гг. в зависимости от кормовых условий. — Докл. АН СССР, т. 120, № 2.
Покровская И. С. 1954. Питание личинок тихоокеанской сельди. — Изв. ТИНРО, т. 43.
Покровская И. С. 1957. Питание личинок сахалинской сельди. — Изв. ТИНРО, т. 44.
Пучков Н. И. 1941. Физиология рыб. Пищеварительный процесс. М.
Петина Т. С. 1957. О среднем весе основных форм зоопланктона Черного моря. — Труды Севаст. биол. станции, т. IX.
Сушкина А. П. 1939. Питание личинок проходных сельдей в речной период. — Зоол. журн., № 2.
Сушкина А. П. 1940. Питание личинок проходных сельдей в р. Волга. — Труды ВНИРО, т. 14.